

Redactie: Onno Berrevoets en Daan van Gent problems@nieuwarchief.nl

Edition 2023-3 We received solutions from Rik Biel, Chris A.J. Klaassen, Thijmen Krebs, Lucía L. Pacios, Ana Pose, Andrés Ventas and Jan de Vries.

## Problem 2023-3/A

Let $n>0$ be an integer and let $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be an isometry, i.e., a map such that for all $x, y \in \mathbb{R}^{n}$ we have $|\varphi(x)-\varphi(y)|=|x-y|$. Let $X \subset \mathbb{R}^{n}$ be a set such that $\{\varphi(x) \mid x \in X\} \subseteq X$. Show that if $X$ is closed and bounded, then $\{\varphi(x) \mid x \in X\}=X$, and show that we can drop neither of these two assumptions.

Solution This problem was solved in a collaboration by Lucía L. Pacios and Ana Pose and Andrés Ventas. Moreover, it was solved by Rik Biel and Thijmen Krebs. Jan de Vries has proved a more general result: an isometry on a compact metric space is surjective.

Let $y \in X$. By continuity of $\varphi$ it suffices to prove that for every $\varepsilon>0$ there exists $x \in X$ such that $|\varphi(x)-y|<\varepsilon$. By Bolzano-Weierstrass, there exist $i>j$ such that $\left|\varphi^{i}(y)-\varphi^{j}(y)\right|<\varepsilon$. Using that $\varphi$ is an isometry, we then find that $\left|\varphi^{i-j}(y)-y\right|<\varepsilon$. Now $x=\varphi^{i-j-1}(y)$ suffices.

Consider $X=\mathbb{Z}_{\geq 0} \subseteq \mathbb{R}$. Note that $X$ is closed but not bounded, and that $x \mapsto x+1$ is an isometry that maps $X$ to $X \backslash\{0\}$.

Identify $\mathbb{R}^{2}$ with $\mathbb{C}$ and take $X=\left\{\exp (n \mathrm{i}) \mid n \in \mathbb{Z}_{\geq 0}\right\}$. Note that $X$ is bounded but not closed, and that $x \mapsto \exp (\mathrm{i}) \cdot x$ is an isometry that maps $X$ to $X \backslash\{1\}$.

## Problem 2023-3/B

Let $X$ be a normally distributed random variable and let $t \in \mathbb{R}_{>0}$. Show that $x \mapsto$ $\mathbb{P}(X \leq x+t \mid x \leq X)$ is an increasing function.
Solution This problem contained an error. Instead of 'increasing', it was stated 'decreasing'. A solution for the problem was sent in by Thijmen Krebs. A more general result was proven by Chris A.J. Klaassen: instead of for normal distributed random variables, it has been proved for random variables with a strongly unimodel distribution.

First note that without loss of generality we may assume that $X$ follows a standard normal distribution, and write $f$ and $F$ for its probability density and cumulative density function, respectively. It suffices to show that $G(x)=F(x+t) / F(x)$ is a decreasing function, or equivalently, that

$$
(\log G(x))^{\prime}=\frac{f(x+t) F(x)-f(x) F(x+t)}{F(x) F(x+t)}<0
$$

for all $x$. Hence it suffices to show for all $x$ that

$$
H(x)=e^{-t x-\frac{1}{2} t^{2}} F(x)-F(x+t)<0 .
$$

We claim that

$$
\lim _{x \rightarrow-\infty} e^{-t x} F(x)=0 .
$$

Clearly 0 is a lower bound. Let $\delta>0$. Then there exists some $B<0$ such that $e^{-\frac{1}{2} x^{2}} \leq \delta e^{t x}$ for all $x<B$. Hence

$$
F(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-\frac{1}{2} z^{2}} \mathrm{~d} z \leq \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} \delta e^{t z} \mathrm{~d} z=\frac{\delta}{\sqrt{2 \pi}} \cdot e^{t x}
$$

for such $x$, so $e^{-t x} F(x) \leq \frac{\delta}{\sqrt{2 \pi}}$ for $x$ sufficiently small. Taking $\delta \rightarrow 0$ we obtain the limit.
It follows from the claim that $\lim _{x \rightarrow-\infty} H(x)=0$. Since also

$$
H^{\prime}(x)=-t e^{-t x-\frac{1}{2} t^{2}} F(x)+e^{-t x-\frac{1}{2} t^{2}} f(x)-f(x+t)=-t e^{-t x-\frac{1}{2} t^{2}} F(x)<0,
$$

we conclude that $H(x)<0$ for all $x$.


Problem 2023-3/C (proposed by Hendrik Lenstra)
Let $p=2 n+1$ be an odd prime and consider the finitely presented group $G$ with generators $x_{1}, \ldots, x_{n}$ and for each $0<i, j, k \leq n$ such that $i j=k$ or $i j=p-k$ the relation $x_{i} x_{j}=x_{k}$. Show that $G$ is a cyclic group of order $n$.

Solution A partial solution for this problem was given by Andrés Ventas. We prove by induction on $i$ the following statement:

$$
\forall j, k \in\{1, \ldots, n\}, \quad\left(i j \equiv \pm k \bmod p \Rightarrow x_{i} x_{j}=x_{j} x_{i}=x_{k}\right)
$$

This is trivial for $i=1$. Now fix an integer $1<i \leq n$ and assume that the statement holds for smaller values of $i$. We prove the statement for $i$. Let $j, k \in\{1, \ldots, n\}$ be such that $i j \equiv \pm k \bmod p$. Consider the $i$ sets $\{h j, h j+1, \ldots, h j+|p / i|\}$ for $h=0, \ldots, i-1$. Each of these sets contains $\lfloor p / i\rfloor+1$ elements, and as $i \cdot(\lfloor p / i\rfloor+1)>p$, we find that the sets are not pairwise disjoint modulo $p$. It follows that there exist integers $0 \leq h_{1}<h_{2}<i$ and an integer $0 \leq \varepsilon<p / i$ for which $h_{2} j \equiv h_{1} j \pm \varepsilon \bmod p$, and $h=h_{2}-h_{1}$ then yields $h j \equiv \pm \varepsilon \bmod p$. Note that $\varepsilon \neq 0$ since $p$ is prime. By assumption we have $x_{i} x_{\varepsilon}=x_{i \varepsilon}$ and by the induction hypothesis applied to $h$ we know that $x_{h} x_{i}=x_{i h}=x_{i} x_{h}$ and that $x_{h} x_{k}=x_{i \varepsilon}=x_{k} x_{h}$. This gives the following equalities

$$
\begin{aligned}
& x_{i} x_{j} x_{h}=x_{i} x_{\varepsilon}=x_{i \varepsilon}=x_{k} x_{h}, \\
& x_{h} x_{j} x_{i}=x_{\varepsilon} x_{i}=x_{\varepsilon i}=x_{h} x_{k},
\end{aligned}
$$

and thus $x_{i} x_{j}=x_{k}=x_{j} x_{i}$ which completes the induction step. Now it follows that $G \rightarrow \mathbf{F}_{p}^{*} /\{ \pm 1\}$ given by $x_{i} \mapsto i$ for all $i \in\{1, \ldots, n\}$ is an isomorphism. Since $\mathbf{F}_{p}^{*}$ is cyclic of order $2 n$, it follows that $G$ is cyclic of order $n$.

