

Redactie: Onno Berrevoets en Daan van Gent problems@nieuwarchief.nl www.nieuwarchief.nl/problems

Edition 2023-1 We received solutions from Michel Bel, Carsten Dietzel and Albert Visser.

Problem 2023-1/A

Does there exist a partitioning X of \mathbb{R} into infinite sets such that for every choice map $c: X \rightarrow \mathbb{R}$, i.e. a map c such that $c(S) \in S$ for all $S \in X$, the image of c is dense in \mathbb{R} ?

Solution We received correct solutions from Michel Bel, Carsten Dietzel and Albert Visser. We show here the solution from Albert Visser: Let's say that the triple (m, n, p) is adequate if m is an odd integer, n is a natural number, and p is an odd prime. We define

$$
A_{m, n, p}=\left\{\left.\frac{m}{2^{n}}+\frac{1}{p^{k}} \right\rvert\, k \in \mathbb{Z}_{\geq 0}\right\} \quad \text { where }(m, n, p) \text { is adequate }
$$

and write A_{∞} for the complement in \mathbb{R} of the union of all such $A_{m, n, p}$. Consider $\mathcal{X}=\left\{A_{m, n, p} \mid(m, n, p)\right.$ is adequate $\} \cup\left\{A_{\infty}\right\}$. Clearly, all elements of \mathcal{X} are infinite and the union of \mathcal{X} is \mathbb{R}. We show that the elements of \mathcal{X} are pairwise disjoint. By definition, A_{∞} is disjoint from the $A_{m, n, p}$. We note that for adequate (m, n, p) and $k \in \mathbb{Z}_{\geq 0}$ the fraction

$$
\frac{m}{2^{n}}+\frac{1}{p^{k}}=\frac{m p^{k}+2^{n}}{2^{n} p^{k}}
$$

cannot be further simplified. This means that, if

$$
\frac{2^{n_{1}}+m_{1} p_{1}^{k_{1}}}{2^{n_{1}} p_{1}^{k_{1}}}=\frac{2^{n_{2}}+m_{2} p_{2}^{k_{2}}}{2^{n_{2}} p_{2}^{k_{2}}}
$$

for adequate $\left(m_{i}, n_{i}, p_{i}\right)$, we deduce from the denominators that $n_{1}=n_{2}, p_{1}=p_{2}$ and $k_{1}=k_{2}$, and finally $m_{1}=m_{2}$. Hence the $A_{m, n, p}$ are pairwise disjoint.

Finally, consider any real r and any $\delta>0$. We can find $m \in \mathbb{Z}$ and $n \in \mathbb{Z}_{\geq 0}$ such that $\left|r-m 2^{-n}\right|<\delta / 2$ by considering the binary expansion of r, and an odd prime p with $1 / p<\delta / 2$. It follows that for all $q \in A_{m, n, p}$ we have $|r-q|<\delta$. In particular, this holds for $q=c\left(A_{m, n, p}\right)$, so the image of c is dense.

Problem 2023-1/B

Show that for all $k \in \mathbb{Z}$ there exists an $x \in \mathbb{Q}$ for which there are at least two subsets $S \subseteq \mathbb{Z}_{\geq 1}$ such that $\sum_{s \in S} s^{k}=x$.

Solution We received a correct solution from Carsten Dietzel: First assume that $k \geq 0$. Let n be an integer with $2^{n}>n^{k+1}+1$. Denote by P_{n} the power set of $\{1, \ldots, n\}$ and by \mathbb{N} the set of positive integers. Define the map

$$
\begin{aligned}
& \sigma: P_{n} \rightarrow \mathbb{N} \\
& S \mapsto \sum_{s \in S} s^{k}
\end{aligned}
$$

For $S \in P_{n}$ we have $\sigma(S) \leq n \cdot n^{k}=n^{k+1}$. Therefore, the range of σ is a subset of $\left\{0, \ldots, n^{k+1}\right\}$. By the pigeonhole principle, σ is not injective, i.e., there are distinct $S_{1}, S_{2} \in P_{n}$ with $\sigma\left(S_{1}\right)=\sigma\left(S_{2}\right)$.

Now let $k<0$. From the case $k \geq 0$ we know that there are finite subsets $T_{1}, T_{2} \subset \mathbb{N}$ such that $\sum_{t \in T_{1}} t^{-k}=\sum_{t \in T_{2}} t^{-k}$. Let N be the least common multiple of the elements of $T_{1} \cap T_{2}$. Define $S_{i}=\left\{N / t \mid t \in T_{i}\right\}$ for $i=1,2$. Then for $i=1,2$ we have

$$
\sum_{s \in S_{i}} s^{k}=\sum_{t \in T_{i}}(t / N)^{-k}=N^{k} \sum_{t \in T_{i}} t^{-k}
$$

and thus $\sum_{s \in S_{1}} s^{k}=\sum_{s \in S_{2}} s^{k}$. Hence, S_{1} and S_{2} are as desired!

Problem 2023-1/C (proposed by Daan van Gent)
For a group G and $g \in G$ write $c(g)=\left\{h g h^{-1} \mid h \in G\right\}$ and $G^{\circ}=\{g \in G \mid \# c(g)<\infty\}$.
a. Show that G° is a normal subgroup of G and that $G^{00}=G^{\circ}$.
b. Now define $G_{\circ}=G / G^{\circ}$. Show that there exists a group G for which the sequence G, G_{0}, G_{00}, \ldots does not stabilize, i.e. for none of the groups H in the sequence we have $H^{\circ}=1$.

Solution We received a correct solution from Carsten Dietzel. The solution shown here is by Daan van Gent.
a. For all $g, h \in G$ we have $c\left(g^{-1}\right)=\left\{a^{-1} \mid a \in c(g)\right\}$ and $c(g h) \subseteq\{a b \mid a \in c(g), b \in c(h)\}$. Thus for $g, h \in G^{\circ}$ both $c\left(g^{-1}\right)$ and $c(g h)$ are finite and $c(1)=\{1\}$, so G° is a subgroup of G. Then note that $c(g)=c(h)$ for conjugates g and h, so G° is normal.

Clearly $G^{\circ \circ} \subseteq G^{\circ}$. Suppose $g \in G^{\circ}$. Since g has only finitely many conjugates in G, it certainly has only finitely many conjugates in a subgroup, so $g \in G^{\circ 0}$.
b. For a family of groups $\left(G_{i}\right)_{i \in I}$ we define the restricted product

$$
\bigoplus_{i \in I} G_{i}=\left\{\left(x_{i}\right)_{i \in I} \in \prod_{i \in I} G_{i} \mid x_{i}=1 \text { for all but finitely } i\right\} .
$$

We inductively define $P_{0}=\{1\}$ and for $k \geq 0$ define

$$
F_{k}=\bigoplus_{\substack{H \triangleleft P_{k} \\ \#\left(P_{k} / H\right)<\infty}}^{\mathbb{Z}_{2}^{P_{k} / H} \text { and } P_{k+1}=F_{k} \rtimes P_{k}, ~}
$$

where \mathbb{Z}_{2} is the group of 2-adic integers and $\pi \in P_{k}$ acts on each factor $\mathbb{Z}_{2}^{P_{k} / H}$ as $\left(\varphi_{H, x}\right)_{x \in P_{k} / H} \mapsto\left(\varphi_{H, \pi x}\right)_{x \in P_{k} / H}$.

Note that every $x \in F_{k}$ has a finite orbit under P_{k}, because all P_{k} / H are finite and each $x \in F_{k}$ has finite support. Hence $F_{k} \subseteq P_{k+1}^{\circ}$. Conversely, suppose $(\varphi, \pi) \in P_{k+1}^{\circ}$, For $(\psi, 1) \in P_{k+1}$ we have $(\psi, 1)(\varphi, \pi)(\psi, 1)^{-1}=\left(\left(\psi_{H, x}+\varphi_{H, x}-\psi_{H, \pi x}\right)_{H, x}, \pi\right)$. If $\pi x \neq x$ for some (H, x), then with $\psi_{H, x}=0$ and $\psi_{H, \pi x}$ ranging over \mathbb{Z}_{2} we obtain infinitely many conjugates of (φ, π). Hence $\pi x=x$, and π acts trivially on every finite quotient of P_{k}. One shows inductively that P_{k} is profinite, hence $\pi=1$. Thus $P_{k+1}^{\circ}=F_{k}$ and $\left(P_{k+1}\right)_{\circ}=P_{k}$.

Finally, let $G=\bigoplus_{k=0}^{\infty} P_{k}$. Observe that $G^{\circ}=\bigoplus_{k=0}^{\infty}\left(P_{k}^{\circ}\right)=\bigoplus_{k=1}^{\infty} F_{k-1} \neq 1$, while $G_{\circ} \cong G$. Hence the sequence never stabilizes.

