Problem Section

Edition 2022-1 We received solutions from Brian Gilding, Pieter de Groen en Nicky Hekster.

Problem 2022-1/A (proposed by Hendrik Lenstra)

Let *R* be a ring. We say $x \in R$ is a *unit* if there exists some $y \in R$ such that xy = yx = 1 and write R^* for the set of units of *R*. Show that $1 < \#(R \setminus R^*) < \infty$ implies $1 < \#R < \infty$.

Solution As solved by Nicky Hekster. Since $1 < \#(R \setminus R^*)$, we may pick some non-zero $a \in R \setminus R^*$. If Ra = aR = R, then a is a unit, which is a contradiction. So suppose without loss of generality that $Ra \subsetneq R$. In particular $Ra \cap R^* = \emptyset$. Hence $Ra \subseteq R \setminus R^*$ is finite. Consider $Ann(a) = \{r \in R : ra = 0\}$. Since $Ann(a) \cap R^* = \emptyset$, we again have that Ann(a) is finite. Finally, the left R-module homomorphism $R \to R$ given by $r \mapsto ra$ induces an isomorphism $R / Ann(a) \cong Ra$, from which it follows that R is also finite.

Problem 2022-1/B (proposed by Hendrik Lenstra)

- Let G be a group. For $n \in \mathbb{Z}_{>0}$ write $G[n] = \{g \in G \mid g^n = 1\}$ and $G^n = \{g^n \mid g \in G\}$.
- **1.** Suppose *G* is abelian and $m, n \in \mathbb{Z}_{>0}$. Show that $G[n] \subseteq G^m$ if and only if $G[m] \subseteq G^n$.
- 2. Show that there exist $m, n \in \mathbb{Z}_{>0}$ such that the above is false when we drop the assumption that *G* is abelian.

Solution 1. We will use additive notation. By symmetry it suffices to show that $G[n] \subseteq mG$ implies $G[m] \subseteq nG$. For a prime p and abelian group H write $H[p^{\infty}] = \{h \in H: (\exists k \ge 0) \ p^k h = 0\}$ and $H[\infty] = \{h \in H: (\exists n > 0) \ nh = 0\}$.

Claim 1. For all n > 0 and primes p we have $G[n][p^{\infty}] = G[p^{\infty}][n]$ and $(nG)[p^{\infty}] = n(G[p^{\infty}])$. *Proof.* The first equality is trivial, as well as the inclusion $n(G[p^{\infty}]) \subseteq (nG)[p^{\infty}]$. Suppose $x \in (nG)[p^{\infty}]$. Then ny = x for some $y \in G$ and $p^k x = 1$ for some $k \ge 0$. Write $n = p^s u$ for some $s \ge 0$ and (u, p) = 1, and let v be an inverse of u modulo p^k . Then $p^{k+s}(uvy) = p^k vx = 1$, so $uvy \in G[p^{\infty}]$, and nuvy = uvx = x, so $x \in n(G[p^{\infty}])$.

Claim 2. With p ranging over the primes we have $\sum_{p} G[p^{\infty}] = G[\infty]$. *Proof.* This follows from the Chinese remainder theorem.

We reduce to the case $G = G[p^{\infty}]$ for some prime p. Suppose $G[n] \subseteq mG$. Then $G[p^{\infty}][n] = G[n][p^{\infty}] \subseteq (mG)[p^{\infty}] = m(G[p^{\infty}])$ by Claim 1. Assuming we have solved the case $G = G[p^{\infty}]$ we get $G[m][p^{\infty}] \subseteq (nG)[p^{\infty}]$. From Claim 2 it then follows that $G[m] \subseteq (nG)[\infty] \subseteq nG$, as was to be shown.

Thus we assume $G = G[p^{\infty}]$. Consequently, we may assume $m = p^a$ and $n = p^b$. Furthermore, the statement is clearly true when a = 0 or b = 0, so suppose neither is the case. Let $x \in G[p^a]$. We distinguish two cases.

Case $a \leq b$: It suffices to show inductively for all $0 \leq k \leq b$ that there exists a $y_k \in G$ such that $x = p^k y_k$. For $k \leq a$ we have $x \in G[p^a] \subseteq G[p^b] \subseteq p^a G$, so we may write $x = p^a y_a$ and $y_k = p^{a-k} y_a$. Suppose $a < k \leq b$ and $p^{k-a} y_{k-a} = x$. Then $p^k y_{k-a} = 0$, so $y_{k-a} \in G[p^k] \subseteq G[p^b] \subseteq p^a G$. Hence $y_{k-a} = p^a y_k$ for some $y_k \in G$ and $p^k y_k = x$, as was to be shown.

Case $b \le a$: It suffices to show inductively for all $0 \le k \le b$ that there exists a $y_k \in G$ such that $p^k x = p^b y_k$. For k = b we may take $y_k = x$. Suppose $0 < k \le b$ and $p^k x = p^b y_k$. Then $0 = p^{b-k}(p^k x - p^b y_k) = p^b(x - p^{2b-k}y_k)$, so $x - p^{2b-k}y_k \in G[p^b] \subseteq p^a G$ for some $z \in G$. It follows that

$$p^{k-1}x = p^{a+k-1}z + p^{2b-1}y_k = p^b(p^{a-b+k-1}z + p^{b-1}y_k) =: p^b y_{k-1},$$

as was to be shown.

2. Consider the non-trivial semi-direct product $G = (\mathbb{Z}/3\mathbb{Z}) \rtimes (\mathbb{Z}/4\mathbb{Z})$. Then $G[2] = \{(0,0), (0,2)\} = G^6$, while $G[6] = \{(a,b): b \in 2\mathbb{Z}\} \nsubseteq \{(0,0), (1,0), (2,0), (0,2)\} = G^2$.

Redactie: Onno Berrevoets en Daan van Gent problems@nieuwarchief.nl www.nieuwarchief.nl/problems Solutions

Problem 2022-1/C (proposed by Onno Berrevoets)

Let $f : \mathbb{R} \to \mathbb{R}$ be a twice differentiable function. Suppose that a < b < c are real numbers such that f(a) = f(b) = f(c) = 0. Prove that there exists $x \in (a, c)$ such that

$$f'(x) + f''(x) = f(x)^2 + 2f(x)f'(x).$$

Solution Solved Brian Gilding, partially solved by Pieter de Groen. Proof from Brian Gilding: Define two functions $\mathbb{R} \to \mathbb{R}$ by the following:

$$g(x) = f(x) \exp\left(-\int_{b}^{x} f(t) dt\right)$$
 and $h(x) = e^{x}(f' - f^{2})(x)$.

Notice that g and h are differentiable on \mathbb{R} . Since g(a) = g(b) = g(c) = 0, by Rolle's theorem there exists $u \in (a,b)$ and $v \in (b,c)$ such that g'(u) = g'(v) = 0. The last two equalities imply that h(u) = h(v). Hence, by Rolle's theorem, h'(x) = 0 for some $x \in (u,v)$. This yields $(f' + f'' - f^2 - 2ff')(x) = 0$.