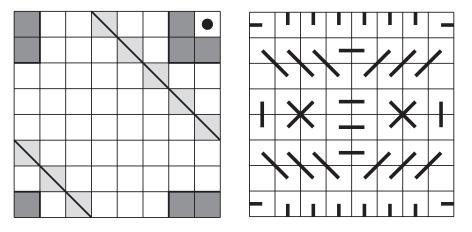
Problem Section

Edition 2021-3 We received solutions from Rik Biel, Mike Daas, Nicky Hekster, Thijmen Krebs and Wim Nuij.

Problem 2021-3/A (proposed by Daan van Gent)

Write $T = (\mathbb{Z}/8\mathbb{Z})^2$ for the *torus chessboard*. For every square $t \in T$ its *neighbours* are the squares in the set $\{t+d \mid d \in D\}$ for $D = \{-1,0,1\}^2 \setminus \{(0,0)\}$. A *line* is a set of squares of the form $\{t+nd \mid n \in \mathbb{Z}\}$ for $t \in T$ and $d \in D$. The left figure on the next page gives an example of the neighbours (coloured dark grey) of the dotted square, as well as an example of a line (coloured light grey). Disprove or give an example: There exists a pairing of neighbouring squares, i.e. a partitioning of T into sets $\{s,t\}$ of size 2 such that s and t are neighbours, such that every line contains a pair.

Solution The right figure shows the solution by Thijmen Krebs (also solved by Wim Nuij):



Problem 2021-3/B (proposed by Hendrik Lenstra)

Write φ for the Euler totient function. Determine all infinite sequences $(a_n)_{n \in \mathbb{Z}_{\geq 0}}$ of positive integers satisfying $\varphi(a_{n+1}) = a_n$ for all $n \geq 0$.

Solution Let $(a_n)_{n \ge 0}$ satisfy $\varphi(a_{n+1}) = a_n$ for all $n \ge 0$. Write $X = \{2^a \cdot 3^b \mid a, b \in \mathbb{Z}_{\ge 0}\}$. Claim: $(a_n)_n \subset X$.

Proof: We will prove this claim by contradiction, so assume that there exists an integer $N \ge 0$ for which $a_N \notin X$. Then for all $n \ge N$ we have that $a_n \notin X$, and without loss of generality N = 0. Then the sequence $(\operatorname{ord}_2(a_n))_{n\ge 0}$ is weakly decreasing. Therefore, without loss of generality we may assume that the sequence $(\operatorname{ord}_2(a_n))_{n\ge 0}$ is constant. Now by dividing the sequence $(a_n)_n$ by $2^{\operatorname{ord}(a_0)-1}$ we may assume that $\operatorname{ord}_2(a_n) = 1$ for all n. For every n, write $a_n = 2b_n$ with $b_n > 1$ odd. Then for every $n \ge 1$ we have that b_n is a prime power: otherwise $\operatorname{ord}_2(a_{n-1}) = \operatorname{ord}_2(\varphi(b_n))$ would be too large. Hence write $b_n = p_n^{c_n}$ with p_n an odd prime and $c_n \in \mathbb{Z}_{\ge 1}$. Then for every $n \ge 2$ we see that $\varphi(b_n)/2 = p_n^{c_n-1} \cdot (p_n-1)/2$ is a prime power, and since $p_n \ne 3$ we find that $c_n = 1$. Hence, $(b_n)_{n\ge 2}$ is a sequence of prime numbers satisfying $b_n = 2b_{n-1} + 1$. Then for all $n \ge 0$ we find that $b_{n+2} = 2^n (b_2 + 1) - 1$. Let p be any prime divisor of b_2 . Then p divides b_{n+2} whenever $2^n \equiv 1$ modulo p, so in this case $b_{n+2} = p$. This happens infinitely many times and is a contradiction since $(b_n)_n$ is strictly increasing. □

By the previous claim we conclude that for all $n \ge 0$ we have $a_n \in X$. The sequences $(a_n)_n \subset X$ that suffice the relation $\varphi(a_{n+1}) = a_n$ for all $n \ge 0$ are precisely those $(a_n)_n$ for which $(a_{n+1}/a_n)_n$ is a weakly increasing sequence in $\{2,3\}$.

Problem 2021-3/C (proposed by Hendrik Lenstra)

Let *R* be a ring. We say $x \in R$ is a *unit* if there exists some $y \in R$ such that xy = yx = 1, and $x \in R$ is *idempotent* if $x^2 = x$. Show that if every unit of *R* is central, then every idempotent of *R* is central.

Redactie: Onno Berrevoets en Daan van Gent problems@nieuwarchief.nl www.nieuwarchief.nl/problems

Solutions

Solution This solution is submitted by Mike Daas (also solved by Rik Biel and Nicky Hekster). Assume that every unit of R is central. Note that for every idempotent $e \in R$ it holds that e(1-e) = (1-e)e = 0.

Claim: $e \in R$ is a central idempotent if and only if (1-e)Re = eR(1-e) = 0. *Proof.* If e is a central idempotent, then (1-e)Re = (1-e)eR = 0 and similarly eR(1-e) = 0. Now suppose (1-e)Re = eR(1-e) = 0. For any $x \in R$ we have 0 = (1-e)xe = xe - exe so xe = exe and similarly ex = exe. Hence xe = ex and e is central. Taking x = 1 in the above shows $e = e^2$, so e is idempotent.

Let $e \in R$ be idempotent. Suppose $x \in (1-e)Re$. Then $x^2 = 0$, so 1+x has inverse 1-x. By assumption 1+x is central. As 1 is trivially central we conclude that x is central. Then x = (1-e)xe = (1-e)ex = 0, so (1-e)Re = 0. Similarly eR(1-e) = 0, so e is central by the above.