Problemen

Problem Section

Redactie: Onno Berrevoets, Rob Eggermont en Daan van Gent problems@nieuwarchief.nl www.nieuwarchief.nl/problems Edition 2020-3 We received solutions from Brian Gilding, Pieter de Groen, Marco Pouw and Ludo Pulles.

Problem 2020-3/A (proposed by Onno Berrevoets)

Let $f:(-1,1) \to \mathbb{R}$ be a function of class C^{∞} , i.e., all higher derivatives of f exist on (-1,1). Let $c \ge 0$ be a real number. Suppose that for all $x \in (-1,1)$ and all $n \in \mathbb{Z}_{\ge 0}$ we have $f^{(n)}(x) \ge -c$. Also assume that for all $x \in (-1,0]$ we have f(x) = 0. Prove that f is the zero function.

Solution We received solutions from Brian Gilding, Pieter de Groen and Marco Pouw. This solution is based on the one by Brian Gilding, who not only gives a very concise solution, but also shows that some of the assumptions can be weakened.

Since $f \in C^{\infty}(-1,1)$ and $f \equiv 0$ in (-1,0], $f^{(n)}(0) = 0$ for every $n \in \mathbb{Z}_{\geq 0}$. Consequently, for arbitrary $x \in (0,1)$ and $n \in \mathbb{Z}_{\geq 2}$, Taylor's Theorem (or repeated integration by parts, following the proof by Pieter de Groen) gives

$$f(x) = \int_{0}^{x} \frac{(x-t)^{n-1}}{(n-1)!} f^{(n)}(t) dt \ge -c \int_{0}^{x} \frac{(x-t)^{n-1}}{(n-1)!} dt = -c \frac{x^{n}}{n!}$$

Likewise,

$$f'(x) = \int_{0}^{x} \frac{(x-t)^{n-2}}{(n-2)!} f^{(n)}(t) dt,$$

and this gives us

$$f(x) - \frac{x}{n-1}f'(x) = -\int_0^x \frac{t(x-t)^{n-2}}{(n-1)!} f^{(n)}(t)dt \ge c \int_0^x \frac{t(x-t)^{n-2}}{(n-1)!}dt = \frac{c}{n-1} \frac{x^n}{n!}$$

Passage to the limit $n \to \infty$ yields f(x) = 0 for all such x.

The assumption $f^{(n)} \ge -c$ in (-1,1) for every $n \in \mathbb{Z}_{\ge 0}$ for some nonnegative real number c can be relaxed to $\pm f^{(n)} \le n!g_n$ for every $n \in \mathbb{Z}_{\ge 0}$ for a sequence of nonnegative functions $\{g_n: n \in \mathbb{Z}_{\ge 0}\} \subset L^{\infty}_{loc}(-1,1)$ with the property $x^n ||g_n||_{L^{\infty}(-x,x)} \to 0$ as $n \to \infty$ for all $x \in (0,1)$. Furthermore, given that $f^{(n)}(0) = 0$ for every $n \in \mathbb{Z}_{\ge 0}$, it is not necessary to suppose that $f \equiv 0$ in (-1,0). This can be shown analogously to $f \equiv 0$ in (0,1).

Problem 2020-3B (proposed by Onno Berrevoets)

Consider the map $f: \mathbb{Z}_{\geq 0}^2 \to \mathbb{Z}_{\geq 0}^2$, $(a,b) \mapsto (2\min\{a,b\}, \max\{a,b\} - \min\{a,b\})$. We call $(a,b) \in \mathbb{Z}_{\geq 0}^2$ *equipotent* if there exists $n \in \mathbb{Z}_{\geq 0}$ such that $f^n(a,b) = (x,x)$ for some $x \in \mathbb{Z}_{\geq 0}$ (where $f^n = f \circ \cdots \circ f$). Show that $(a,b) \in \mathbb{Z}_{\geq 1}^2$ is equipotent if and only if $\frac{a+b}{\gcd(a,b)}$ is a power of 2.

Solution We received solutions by Pieter de Groen and Ludo Pulles. This solution is based on the one by Pieter.

It is clear that f(ca,cb) = cf(a,b) for all non-negative integers a, b, k, and it follows that (ca,cb) is equipotent if and only if (a,b) is. So it suffices to show that for $a,b \ge 1$ relatively prime, we have (a,b) is equipotent if and only if $a + b = 2^k$ for some $k \ge 1$.

 $\in:$ Suppose that $a, b \in \mathbb{Z}_{\geq 1}$ are relatively prime and satisfy $a + b = 2^k$. If k = 1, we have $(a,b) = (1,1) = f^0(1,1)$ is equipotent. If k > 1 and $(c,d) \coloneqq f(a,b)$, then $c = 2\min(a,b)$ is even, and hence so is d because c + d = a + b is even. Hence (a,b) is equipotent with sum 2^k if and only if $(\frac{c}{2}, \frac{d}{2})$ is equipotent with sum 2^{k-1} . Note that $\frac{c}{2}$ and $\frac{d}{2}$ are relatively prime because $\gcd(2\min\{a,b\}, \max\{a,b\} - \min\{a,b\})$ can only take on the values $\gcd(a,b)$ or $2 \gcd(a,b)$. We can conclude (a,b) is equipotent by induction.

 \Rightarrow : Conversely, suppose that $a, b \in \mathbb{Z}_{\geq}1$ are relatively prime with a+b not a power of 2. Note that the sum of (a,b) is invariant under f, because if f(a,b) = (p,q), we have $p+q = \max(a,b) + \min(a,b) = a+b$. If a+b is odd, then the same is true for $f^n(a,b)$, so (a,b) is not equipotent. Suppose a+b is even. Because a, b are relatively prime, both a

Solutions

Ì IJ and *b* are odd. Now similar to the above, if f(a,b) = (c,d), then both *c* and *d* are even, and (a,b) is equipotent if and only if $(\frac{c}{2}, \frac{d}{2})$ is. Since $\frac{c}{2} + \frac{d}{2} = \frac{a+b}{2}$ and $\frac{c}{2}, \frac{d}{2}$ are relatively prime, repeating this procedure eventually results in a pair with odd element-sum, which is not equipotent. Hence (a,b) was not equipotent either.

Problem 2020-3/C* (folklore)

Uncle Donald cuts a 3 kg piece of cheese in an arbitrary, finite number of pieces of arbitrary weights. He distributes them uniformly randomly among his nephews Huey, Dewey and Louie. Prove or disprove: the probability that two of the nephews each get strictly more than 1 kg is at most two thirds.

Solution This problem remains open. This is a Star Problem for which the proposer does not know any solution. For the first correct solution sent in within one year there is a prize of \notin 100.