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Edition 2015-1 We received solutions from Rik Bos, Josse van Dobben de Bruyn, José Marı́a
Giral, Alex Heinis, José Hernández Santiago, Thijmen Krebs, Robert van der Waall and Jeroen
Winkel.

Problem 2015-1/A (proposed by Raymond van Bommel and Julian Lyczak)
A commutative ring R is charming if every ideal of R is an intersection of maximal ideals. Prove
that a Noetherian charming ring is a finite product of fields. Does there exist a charming ring
that is not a product of fields?

Solution We received solutions from Rik Bos, Josse van Dobben de Bruyn, José Marı́a Giral and
Jeroen Winkel. The following solution is based on that of José Marı́a Giral, who also receives
the book token. The example used in the following solution was given by Rik Bos, Josse van
Dobben de Bruyn and José Marı́a Giral.
We first show that a Noetherian charming ring is a finite product of rings. The following lemma
on general charming rings will be useful for this.

Lemma. Let R be a charming ring. Then every prime ideal of R is maximal.

Proof. First note that every ideal of R is an intersection of maximal — in particular radical —
ideals, so every ideal of R is radical. In particular, for all r ∈ R we have (r2) = (r ), so for all
r ∈ R there exists some s ∈ R such that r = sr2.
Now let p be a prime ideal of R, and let r ∈ R be an element such that r 6∈ p. Then for s ∈ R
such that r = sr2, we have r (1− sr ) = 0 ∈ p. Therefore 1− sr ∈ p, from which we deduce that
p + rR = R, since (1− sr ) + sr = 1. Hence p is maximal. �

Let R be a Noetherian charming ring. We show that every ideal of R is a finite intersection of
maximal ideals. Suppose for a contradiction that not every ideal of R is a finite intersection of
maximal ideals. Consider the (non-empty) collection I of ideals I that are not finite intersections
of maximal ideals. AsR is Noetherian, any ascending chain of ideals in I stabilises, so the union
of any chain of ideals in I is again an ideal in I. Therefore by Zorn’s Lemma, the collection I
contains a maximal element. Denote such an element by I.
Note that by Lemma, the ideal I is not prime. Therefore there exist x,y ∈ R such that x,y 6∈ I
and xy ∈ I. Let J1 = I + xR and J2 = I + yR. As all ideals of R are radical, we have
J1 ∩ J2 = J1J2 = xyR + xR · I + yR · I + I2 = I. By maximality of I, both J1 and J2 are finite
intersections of maximal ideals. Therefore so is I, but this is a contradiction. So all ideals of R
are finite intersections of maximal ideals.
In particular, 0 is a finite intersection of maximal ideals m1 ∩ · · · ∩mn, and maximal ideals are
pairwise coprime, so by the Chinese Remainder Theorem, we have R ∼=

∏n
i=1 R/mi, which is a

finite product of fields.
For the second part, we show that the answer to the question is yes. We first show that all
Boolean rings — rings in which every element is an idempotent — are charming. Let R be a
Boolean ring. First note that every prime ideal of R is maximal; if p ⊆ R is a prime ideal and
r ∈ R−p, then r2 = r , so r (1−r ) = 0 ∈ p, hence 1−r ∈ p and therefore 1 = (1−r )+r ∈ p+rR.
Now we note that every ideal inR is radical; if r ∈ R such that rn ∈ I for some positive integern,
then r = rn ∈ I. Therefore I is the intersection of the prime (hence maximal) ideals containing
I, showing that R is charming.
Let R be the subring of

∏∞
i=1 F2 consisting of the elements (ai)∞i=1 such that either all but finitely

manyai are zero or all but finitely manyai are one. Note that all elements ofR are idempotents,
soR is Boolean, hence charming. Also, the only fields of which all elements are idempotents are
isomorphic to F2, so all quotients of R by maximal ideals and all subfields of R are isomorphic
to F2. So ifR is a product of fields, then it must be isomorphic to a product of F2. Since products
of F2 are either finite or uncountable, and since R is countable, it follows that R is not a product
of fields. Therefore R is a charming ring that is not a product of fields, as desired.
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Problem 2015-1/B (folklore)
Let S be a set of prime numbers with the following property: for all n ≥ 0 and distinct
p1, . . . , pn ∈ S the prime divisors of p1 · · ·pn + 1 are also in S. Show that S contains all
primes.

Solution We received solutions from Thijmen Krebs and Jeroen Winkel. The following solution
is based on that of Thijmen Krebs, who also receives the book token.
Fix any prime q. We say that a prime p in S is q-recurring if S contains infinitely many primes
that are congruent to p modulo q. Note that there are only finitely many primes p in S that are
not q-recurring. Let x denote the product of all primes p in S that are not q-recurring. Let y be
any finite product of distinct q-recurring primes in S. Then note that all prime divisors of xy + 1

lie in S. As gcd(xy + 1, x) = 1, it follows by definition of x that moreover all prime divisors of
xy + 1 are q-recurring.
We can now define a sequence (yi)∞i=0 of products of q-recurring primes recursively by setting
y0 = 1, and by setting for n ≥ 1 the number yn to be the number obtained from xyn−1 + 1

in the following way. Let p1p2 · · ·ps be the prime factorisation of xyn−1 + 1 (in which primes
can occur multiple times). Pick for each pi a prime p′i in S that is congruent to pi modulo q, in
such a way that all p′i are distinct; this is possible as there are infinitely many such p′i. Then
set yn = p′1p

′
2 · · ·p′s . An inductive argument quickly shows that for all non-negative integers

n, we have yn ≡ xn + · · · + x + 1 mod q.
We now show that q ∈ S. If x ≡ 0 modulo q, then q ∈ S by definition of x. If x ≡ 1 modulo
q, then by the above we conclude that q | yq−1 so q ∈ S by definition of yq−1. Finally, in the
other cases, we can apply Fermat’s Little Theorem to see that since (x − 1)yq−2 ≡ xq−1 − 1

modulo q, we have q | yq−2, so q ∈ S by definition of yq−2. Therefore q ∈ S, as desired.

Problem 2015-1/C (proposed by Roberto Stockli)
Determine all pairs (p,q) of odd primes with q ≡ 3 mod 8 such that 1

p (qp−1 − 1) is a perfect
square.

Solution We received solutions from Alex Heinis, José Hernández Santiago, Thijmen Krebs,
Robert van der Waall and Jeroen Winkel. The following solution is based on that of Alex Heinis,
who also receives the book token. In addition, we thank Robert van der Waall for bringing our
attention to the article [1], in which one of the results is that the equation 1

p (mp−1 − 1) = a2

has a unique integral solution (m,p,a) = (3,5,4) withm odd.
Note that (p,q) = (5,3) is a solution. We show that it is the only one.
Suppose that (p,q) is a solution. Then (q(p−1)/2 + 1)(q(p−1)/2 − 1)/p is a square. Both factors
on the left hand side are even as q is odd, so their greatest common divisor is 2. Therefore the
two factors are of the forms 2a and 2pb for certain positive integers a,b, in no particular order,
such that gcd(a,pb) = 1. As ab is a square, it follows that both a and b are squares. Note that
2 is not a square modulo q as q ≡ 3 modulo 8. Therefore q(p−1)/2 + 1 cannot be twice a square.
It follows that q(p−1)/2 − 1 is twice a square.
Hence q(p−1)/2 − 1 = 2a and q(p−1)/2 + 1 = 2pb. Writing a = k2 and b = l2 for integers k, l, we
can rewrite the above system of equations as q(p−1)/2 = k2 + pl2 and 1 = pl2 − k2. Note that
precisely one of k and l is even as precisely one of q(p−1)/2 − 1 and q(p−1)/2 + 1 is divisible by
4. If l were even, then 1 ≡ −k2 modulo 4, which is a contradiction. So l is odd, k is even, and
therefore p ≡ 1 modulo 4. Hence we have a factorisation (q(p−1)/4 + 1)(q(p−1)/4 −1) of 2k2 with
integer factors.
In the same way as above, we see that the two factors on the left hand side are of the forms 2c2

and 4d2 for certain positive integers c,d, in no particular order, and that q(p−1)/4 + 1 cannot
be twice a square. Therefore we write q(p−1)/4 − 1 = 2c2 and q(p−1)/4 + 1 = 4d2. Hence
q(p−1)/4 = (2d − 1)(2d + 1). Note that gcd(2d − 1,2d + 1) = 1. As q is prime, it follows that
since d is positive, we must have 2d− 1 = 1, so d = 1. Hence q = 3 and p = 5. This shows that
(p,q) = (5,3) is the only solution.
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