Problem Section

Redactie: Johan Bosman Gabriele Dalla Torre Christophe Debry Jinbi Jin Marco Streng Wouter Zomervrucht Problemenrubriek NAW

Mathematisch Instituut Universiteit Leiden Postbus 9512 2300 RA Leiden problems@nieuwarchief.nl www.nieuwarchief.nl/problems **Edition 2013-3** We received solutions from Pieter de Groen (Brussels), Alex Heinis (Amsterdam), Tejaswi Navilarekallu and Sander Zwegers (Keulen).

Problem 2013-3/A (proposed by Hendrik Lenstra)

Let $a, b \in \mathbb{C}$. Show that if there exists an irreducible polynomial $f \in \mathbb{Q}[X]$ such that f(a) = f(a+b) = f(a+2b) = 0, then b = 0.

Solution We received solutions from Alex Heinis, Tejaswi Navilarekallu and Sander Zwegers. The following solution is based on that of Alex Heinis, who will receive the book token.

Let *S* be the (finite) set of complex zeros of *f* and let *H* be the convex hull of *S*, which is a polygon or a line segment. Let $v \in S$ be a vertex of *H*.

Since *f* is irreducible, the Galois group *G* of its splitting field acts transitively on *S*, hence there is an element $\sigma \in G$ with $\sigma(a + b) = v$.

Now $\sigma(a)$ and $\sigma(a + 2b)$ are also in *S*, and $v = \sigma(a + b)$ lies on the line segment connecting them. This contradicts the fact that v is a vertex, unless b = 0.

Problem 2013-3/B (a result due to B. Konstant and N. Wallach [1])

Let *n* be a positive integer, and let e_{ij} be an integer for all $1 \le j \le i \le n$. Show that there exists an $n \times n$ -matrix with entries in \mathbb{Z} such that the eigenvalues of the top left $i \times i$ -minor are e_{i1}, \ldots, e_{ii} (with multiplicity).

Solution We received correct solutions from Pieter de Groen, Alex Heinis and Sander Zwegers. All gave a solution similar to the one we present below. The book token goes to Sander Zwegers. For any square matrix A we denote the top left $i \times i$ -minor by $m_i(A)$. We also use the notation $\chi_A(\lambda) := \det(\lambda I - A)$ for the characteristic polynomial of A. Let S_n be the set of all $n \times n$ -matrices $A = (a_{ij})$ over the polynomial ring $\mathbb{Z}[\lambda]$ such that $a_{i+1,i} = 1$ for all $1 \le i < n$ and such that $a_{i,j} = 0$ if $i \ge j+2$, i.e., A has ones on the line just below its main diagonal and has zeroes below this line of ones. (We allow λ in the matrices because we will work with characteristic polynomials.) It suffices to prove the following claim:

Claim. Let *n* be a positive integer and let e_{ij} be an integer for all $1 \le j \le i \le n$. Then there exists a matrix $A \in S_n$ with entries in \mathbb{Z} such that $\chi(m_i(A)) = (\lambda - e_{i1}) \cdots (\lambda - e_{ii})$ for all $1 \le i \le n$.

We prove this claim by induction on n. The base case n = 1 is trivial: the matrix (e_{11}) will do. Now suppose that the claim is true for some $n = N - 1 \ge 1$ and let us prove it for n = N. So let e_{ij} be an integer for all $1 \le j \le i \le N$ and let $A \in S_{N-1}$ be the matrix we get from the claim for n = N - 1 and the integers e_{ij} with $1 \le j \le i \le N - 1$. Since $1, \chi(m_1(A)), \ldots, \chi(m_{N-1}(A)), \lambda\chi(m_{N-1}(A))$ are monic polynomials over \mathbb{Z} of degree $0, 1, \ldots, N - 1, N$ (respectively), they form a \mathbb{Z} -basis for the abelian group of polynomials of degree $\le N$ with integer coefficients. So there exist integers x_1, \ldots, x_{N+1} such that the degree–N polynomial $(\lambda - e_{N1}) \cdots (\lambda - e_{NN})$ is equal to the linear combination

$$-x_1 + (-1)^{N+1} x_{N+1} \lambda \chi(m_{N-1}(A)) + \sum_{i=2}^{N} (-1)^i x_i \chi(m_{i-1}(A)).$$

Since this polynomial is monic of degree *N*, we know that $x_{N+1} = (-1)^{N+1}$. We claim that we can take the following matrix to prove the claim for n = N:

	(x_1
B =		A		x_2
				:
	0		1	$\left(\begin{array}{c} \cdot \\ x_N \end{array} \right)$

First of all, $A \in S_{N-1}$ implies that $B \in S_N$. Moreover, for i < N we have $\chi(m_i(B)) = \chi(m_i(A)) = (\lambda - e_{i1}) \cdots (\lambda - e_{ii})$ by the construction of B and the choice of A. So we are left to compute $\chi(m_N(B)) = \chi(B)$.

7

Lemma. For every $M = (M_{ij}) \in S_n$ ($n \ge 2$) we have

$$\det(M) = (-1)^n \left(-M_{1,n} + \sum_{i=2}^n (-1)^i M_{i,n} \det(m_{i-1}(M)) \right).$$

Proof. Expand the determinant with respect to the last row to find that

$$\det(M) = M_{n,n} \det(m_{n-1}(M)) - \det\begin{pmatrix} & M_{1,n} \\ & m_{n-2}(M) & M_{2,n} \\ & & \vdots \\ 0 & \cdots & 1 & M_{n-1,n} \end{pmatrix}.$$

Now use induction and the fact that $m_i(m_i(M)) = m_i(M)$ for all $i \le j \le n$. \Box

The lemma enables us to compute the characteristic polynomial of *B*:

$$\chi(B) = (-1)^N \det(B - \lambda I) = -x_1 + \sum_{i=2}^N (-1)^i (B - \lambda I)_{i,N} \det(m_{i-1}(B - \lambda I))$$
$$= -x_1 + x_2 \chi(m_1(A)) + \dots + (-1)^{N-1} x_{N-1} \chi(m_{N-2}(A))$$
$$+ (-1)^N (x_N - \lambda) \chi(m_{N-1}(A)).$$

By definition of x_1, \ldots, x_N , this polynomial is equal to $(\lambda - e_{N1}) \cdots (\lambda - e_{NN})$ and this concludes the proof of the claim for n = N.

Problem 2013-3/C (proposed by Bart de Smit and Hendrik Lenstra)

Let *A* be a finite commutative unital ring. Does there exist a pair (B, f) with *B* a finite commutative unital ring in which every ideal is principal, and *f* an injective ring homomorphism $A \rightarrow B$?

Solution We received no correct solutions. The answer to the question is "no". Let *A* be the finite commutative unital ring $\mathbb{F}_2[x, y]/(x^2, y^2)$. Let *B* be a finite commutative unital ring in which every ideal is principal, and let $f: A \to B$ be a ring homomorphism. It now suffices to show that *f* cannot be injective.

First note that the ring homomorphism f forces 2 = 0 in B. By assumption there exists an element $z \in B$ such that we have the identity (f(x), f(y)) = (z) as ideals of B. Hence there exist $b, c \in B$ such that f(x) = bz and f(y) = cz, so $f(xy) = bcz^2$. Writing z = df(x) + ef(y) with $d, e \in B$, we get $z^2 = d^2f(x^2) + 2def(xy) + e^2f(y^2) = 0$. We deduce that f(xy) = 0, hence f is not injective, as desired.

Reference

1. B. Kostant and N. Wallach, Gelfand–Zeitlin theory from the perspective of classical mechanics, Studies in Lie theory, *Progress in Mathematics* 243, 319–364, http://arxiv.org/abs/math/0408342v2.

7