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Edition 2013-2 We received solutions from Leon van den Broek (Nijmegen), Alex Heinis (Amster-
dam), Jos van Kan (Delft), Thijmen Krebs (Nootdorp), Javier Sánchez-Reyes (Castilla-La Mancha,
Spain) and Ángel Plaza (Las Palmas de Gran Canaria, Spain), and Robert van der Waall (Huizen).

Problem 2013-2A (based on a problem proposed by Gerard Renardel de Lavalette)
We have two hourglasses, A for a seconds and B for b seconds, where a and b are relatively
prime integers and 0 < a < b. Let t0 be an integer with t0 ≥ b + ( 1

2a− 1)2. Show that A and B
can be used to identify the time t = t0 if the upper bulbs are empty at t = 0.

Remark. The original problem received from the proposer was to prove a slightly stronger result.
Letm be the remainder of b upon division by a. The original problem was to prove that for any
integer t0 > b +m(a−m)− a, the time t = t0 can be identified using A and B.

Solution We received only one correct solution, from Thijmen Krebs, who will receive the book
token. The following solution is based on that solution.
Let m be the remainder of b upon division by a. For any integer T that is a multiple of a or b,
we can use the following strategy:
− while t < T , turn each hourglass whenever it is empty;
− while t ≥ T , turn both hourglasses whenever at least one is empty.
If we apply this strategy to T = b, then we turn both hourglasses at the times t = b + km for
k = 0,1,2, . . ..
If we apply this strategy to T = a(1 + b−m

a ) = b + (a−m), then we turn both hourglasses at the
times t = b + k(a−m) for k = 1,2,3, . . ..
In particular, all elements of the following set are measurable times:

S = {b + km : 0 ≤ k < a−m} ∪ {b + k(a−m) : 0 < k ≤m}.

As a and b are coprime, so are m and a, hence S contains an element of each residue class
modulo a. Moreover, the maximal element of S is b +m(a−m).
Before starting the strategy above, we can measure any non-negative integer multiple of a
seconds using A, while letting B stay empty. In particular, we can measure any time t0 ≥
b +m(a−m)− a + 1.
Finally, note m(a−m) ≤ ( 1

2a)2, so b +m(a−m)− a + 1 ≤ b + ( 1
2a)2 − a + 1 = b + ( 1

2a− 1)2

and we can measure any time t0 ≥ b + ( 1
2a− 1)2.

Problem Problem 2013-2B (folklore, communicated by Jeanine Daems)
In a two-player game, players take turns drawing a number of coins from a pile that starts withn
coins. The first player takes at least one coin from the pile, but not all. In the subsequent turns,
each player takes at least one coin, and at most twice the number of coins taken in the previous
turn. The player who takes the last coin wins. For which numbers n can the first player win?

Solution We received correct solutions from Alex Heinis and Thijmen Krebs. The book token is
awarded to Alex Heinis. The game is known as Fibonacci Nim, and the first player can win for
those integers n > 1 that are not a Fibonacci number.
Let (Fk)k≥1 be the Fibonacci sequence: F1 = 1, F2 = 2 and Fk+2 = Fk+1 + Fk for k ≥ 1. The
proof uses Zeckendorf’s theorem: every positive integer can uniquely be written as the sum of
non-consecutive Fibonacci numbers. Let z be the function on the positive integers that assign
to m the smallest Fibonacci number occurring in the Zeckendorf decomposition ofm. E.g., we
can write 20 = 13 + 5 + 2 = F6 + F4 + F2 and z(20) = F2 = 2.
We define a position in this game to be a pair (m,d) where m is number of coins left on the
pile and d the maximal number of coins that may be taken (by the player who is to move). The
initial position is (n,n − 1) and the final positions are those of the form (0, d). Call a position
(m,d) ‘good’ if it is non-final and d ≥ z(m); call it ‘bad’ otherwise.

Lemma. Let (m,d) be a good position. There exists a move to a bad position.
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assumption, d is at least Fkr . Our move is to take exactly Fkr coins. The new position is
(m−Fkr ,2Fkr ). This is a bad position: in the case r = 1 it is even final, and otherwise it follows
from 2Fkr < Fkr−1 . �

Lemma. Let (m,d) be a non-final bad position. All moves lead to a good position.

Proof. Write Fk = z(m). By assumption we have d < Fk. Suppose we take x coins, for some
x ∈ {1, . . . , d}. Let t ≥ 0 be the even number such that Fk−t−2 ≤ x < Fk−t . Then

Fk − Fk−t < Fk − x ≤ Fk − Fk−t−2

hence

Fk−1 + Fk−3 + · · · + Fk−t+1 < Fk − x ≤ Fk−1 + Fk−3 + · · · + Fk−t−1,

so z(Fk − x) ≤ Fk−t−1, which is smaller than 2Fk−t−2 ≤ 2x. Note further that z(Fk − x) =

z(m− x). Hence (m− x,2x) is a good position. �

Together the lemmas show that the good positions are exactly the winning ones. The initial
position (n,n− 1) is good if and only if z(n) ≤ n− 1, i.e., if and only if n is not Fibonacci.

Problem Problem 2013-2C (proposed by Bas Edixhoven and Maarten Derickx)
Let ABCD be a convex quadrilateral inside a plane U in R3. Suppose that ABCD is not a
parallelogram. Show that there exist a plane V in R3 and a point P ∈ R3 − (U ∪ V ) such that if
a light source is placed in P , then the shadow of ABCD on V is a square.

Solution We received solutions from Leon van den Broek, Alex Heinis, Jos van Kan, Javier
Sánchez-Reyes and Ángel Plaza, and Robert van der Waall. The book token goes to Jos van Kan.
The main idea of the solution is to pick the plane V and the point P in such a way that the
projection on V of the intersection of the lines AB and CD, and that of BC and AD is ‘at
infinity’. Some extra conditions on P related to the diagonals and consecutive edges will then
ensure that the projection of ABCD on V is a square.
If the lines AB and CD intersect, denote their intersection by X1. Similarly, if BC and AD
intersect, denote their intersection by X2.
We consider three cases, the first of which is the following.

Case 1. The lines AB and CD intersect, and so do BC and AD. Moreover, both of AC and BD
intersect the line X1X2.

First note that X1X2 does not intersect the quadrilateral ABCD, as ABCD is convex. Let Y1 be
the intersection of AC and X1X2, and likewise, let Y2 be the intersection of BD and X1X2.
Let W be a plane that has as intersection the line X1X2 with U . In particular, U 6= W . Let Γ1,Γ2 be the circles in W with the segments X1X2, Y1Y2 as diameter, respectively. Let P be an
intersection of Γ1 and Γ2, and let V be any plane parallel toW such that the quadrilateralABCD
lies between V and W . This intersection exists as one of Y1, Y2 lies between X1 and X2, and
the other does not.
Then note that P does not lie in U , as the points X1, X2, Y1, Y2 are pairwise distinct, and that P
does not lie in V , as P lies inW , which is parallel to V . Hence P ∈ R3 − (U ∪ V ).
Now let A0, B0, C0,D0 be the respective intersections of AP,BP,CP,DP with V . They exist, as
the given lines intersect in P withW , which is parallel to V . By construction of V , and as X1X2

does not intersect the quadrilateral ABCD, it now suffices to show that A0B0C0D0 is a square
in V .
Let l be a line in U , not equal to X1X2. Write P(l) for the unique plane through l and P , write
I(l) for the intersection line ofW with P(l), and write I0(l) for the intersection line of V with P(l).
(So for example, L0(AB) = A0B0.) As V and W are parallel, it follows that for all lines l, m in
U , the angle between I(l) and I(m) is equal to the one between I0(l) and I0(m). Note that a
square is a quadrilateral such that
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− the diagonals are perpendicular.
Therefore, to show that A0B0C0D0 is a square, it suffices to show that the I(e) (with e an edge
or a diagonal of the quadrilateral ABCD) satisfy the above properties.
Now we simply note that

I(AB) = I(CD) = PX1, I(BC) = I(AD) = PX2,

and that

I(AC) = PY1, I(BD) = PY2,

so by construction of P , the quadrilateral A0B0C0D0 is a square, as desired.
For the remaining cases, we will only state them, and the corresponding construction of P , as
the proof (and the construction of V ) is done in the same way.

Case 2. The lines AB and CD intersect, and so do BC and AD. Moreover, at most one of AC
and BD intersects the line X1X2.

Note here that at least one of AC and BD intersects the line X1X2, as AC and BD intersect,
so exactly one of them intersects X1X2. We assume without loss of generality that AC and
X1X2 intersect, and let Y be their intersection. Note that Y lies between X1 and X2, as the
line AC intersects the segment BD, which is parallel to X1X2. Let W be any plane that has as
intersection the line X1X2 with U , and let Γ be the circle in W with diameter X1X2. Then we
take P to be an intersection of Γ with the line through Y perpendicular to X1X2.

Case 3. Exactly one of the pairs of lines (AB,CD) and (BC,AD) intersect.

We assume without loss of generality that AB and CD intersect, and let X denote this inter-
section. Let l be the line through X parallel to BC (hence also to AD). Then the lines AC and
BD both intersect l, as they intersect BC. Let Y1 and Y2 be their respective intersections. Then
X lies between Y1 and Y2, as for S the intersection of AC and BD, the line XS intersects the
segments BC andAD, which are parallel to l. LetW be any plane that has l as intersection with
U , and let Γ be the circle with diameter Y1Y2. Then we take P to be an intersection of Γ with the
line through X perpendicular to l.

References. This problem turned out to be rather well-known, as we received a lot of references.
Thanks to Leon van den Broek, Javier Sánchez-Reyes and Ángel Plaza, and Robert van der Waall
for these. The references given were, respectively,
− L. van den Broek, Welke schaduwbeelden, Euclides 64, nr. 3 (1988, in Dutch).
− Problem 72 of H. Dörrie, 100 great problems of elementary mathematics, their history and

solution (translation of Thriumph der Mathematik, 1932), reworked in 2010 by M. Woltermann
http://www2.washjeff.edu/users/MWoltermann/Dorrie/72.pdf.

− E.J. Hopkins and J.S. Hails, An Introduction to Plane Projective Geometry, Clarendon Press
(1953).


