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Edition 2013-1 We received solutions from Wouter Cames van Batenburg (Leiden), Hao Chen
(Seattle), Charles Delorme (Paris), Florian Eisele (Brussels), Alex Heinis (Hoofddorp), Pieter
de Groen (Brussels), Thijmen Krebs (Nootdorp), Guido Senden (Groningen), Sep Thijssen (Ni-
jmegen) and Traian Viteam (Punta Arenas).

Problem 2013-1/A Consider a regular n-gon P1P2 . . . Pn, and draw n − 3 diagonals such that
there are no intersection points in the interior. The polygon is now divided into n− 2 triangles.
Let ti be the number of such triangles that have a vertex at Pi. Show that

t1 −
1

t2 −
1

. . .−
1

tn−1

= 0.

Solution We received solutions from Charles Delorme, Alex Heinis, Pieter de Groen, Guido
Senden, Sep Thijssen, Traian Viteam and Thijmen Krebs. The book token goes to Sep Thijssen.
All solutions followed the same general strategy. The following solution is most similar to that
of Charles Delorme, Pieter de Groen and Sep Thijssen.
We use [t1, . . . , tn−1] to denote the continued fraction from the problem statement, and we will
prove the identity by induction for all convex (not necessarily regular) n-gons with n ≥ 3. Note
that the base case n = 3 is trivial as 1− 1

1 = 0.
Now assume n ≥ 4 and assume that the identity holds for n − 1. The induction step works
by finding a triangle with two exterior edges, that is, a triangle Pk−1PkPk+1 with tk = 1, and by
removing that triangle from the n-gon, which yields an (n− 1)-gon.

Lemma 1. If n ≥ 4, then there exists an integer k with 2 ≤ k ≤ n− 1 and tk = 1.
Proof. We prove first that there are at least two integers k with 1 ≤ k ≤ n with tk = 1. Suppose
that there is at most one such integer, that is, suppose that there is at most one triangle with two
exterior edges. The total number of exterior edgesn then is at most 2 + (#triangles−1) = n−1,
which is a contradiction.
Now note that no two such integers k can correspond to adjacent vertices, so that at least one
of them satisfies 2 ≤ k ≤ n− 1. �

Now let k be as in the lemma and assume for now k 6= n− 1. Consider the (n− 1)-gon with the
vertex Pk and the edges Pk−1Pk and PkPk+1 removed. For that (n − 1)-gon, the triangle count
tk is omitted, and the adjacent numbers tk−1 and tk+1 are lowered by 1. In other words, the
induction hypothesis yields

[t1, . . . , tk−2, tk−1 − 1, tk+1 − 1, tk+2, . . . , tn−1] = 0.

In particular, the proof of the case k 6= n−1 is finished once we prove the following key identity.

Lemma 2. We have

[t1, . . . , tk−2, tk−1 ,1, tk+1 , tk+2, . . . , tn−1]

=[t1, . . . , tk−2, tk−1 − 1, tk+1 − 1, tk+2, . . . , tn−1].

Proof. From the definition, we directly get

[a1, . . . , am, [b1, . . . , bn]] = [a1, . . . , am, b1, . . . , bn]. (1)

Moreover, it is a simple matter of writing things out to see
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[a,1, b] = [a− 1, b − 1]. (2)

Indeed, we have

a− 1

1− 1
b

= a− b
b − 1

= a− 1− 1
b − 1

.

The result follows by taking a = tk−1 and b = [tk+1, tk+2, . . . , tn−1] in (2) and applying (1)
repeatedly. �

This leaves only the case k = n− 1, for which we use the identity

[t1, . . . , tk−2, tk−1,1] = [t1, . . . , tk−2, tk−1 − 1],

which is obvious as the tail reads tk−1 − 1
1 = tk−1 − 1.

Remark. One might worry about division by zero. However, if one takes 1/0 = ∞ and 1/∞ = 0,
then all the identities in the proof above continue to make sense even with divisions by zero.
Alternatively, it is possible to prove that division by zero does not occur. This can be done by
showing in the induction [ti, . . . , tn−1] ≥ 0 for i = 1, . . . , n− 1 with equality if and only if i = 1,
which requires a few extra case distinctions in the induction step.

Remark. If one does the induction with k = 1 or k = n, then the induction step becomes more
complicated. Fortunately we did not need to do this thanks to Lemma 1. For example, with
k = 1, one needs to prove the implication

[t2 − 1, t3, . . . , tn−1] = 0 =⇒ [1, t2, t3, . . . , tn−1] = 0.

Let b = [t2, t3, . . . , tn−1], then this reads b − 1 = 0 ⇒ 1− 1/b = 0, which is true, but cannot be
proved by an identity as in the cases 2 ≤ k ≤ n− 1, because generally b − 1 6= 1− 1/b.

Problem 2013-1/B You are allowed to transform positive integers n in the following way. Write
n in base 2. Write plus signs between the bits at will (at most one per position), and then
perform the indicated additions of binary numbers. For example, 12310 = 1111011 can get +

signs after the second, third and fifth bits to become 11 + 1 + 10 + 11 = 910; or it can get + signs
between all the bits to become 1 + 1 + 1 + 1 + 0 + 1 + 1 = 610; and so on.
Prove that it is possible to reduce arbitrary positive integers to 1 in a bounded number of steps.
That is, there is a constantC such that for anyn there is a sequence of at mostC transformations
that starts with n and ends at 1.

Solution This problem appeared originally in the Fall 2011 edition of the MSRI Emissary. We
received solutions from Wouter Cames van Batenburg, Hao Chen, Pieter de Groen, Thijmen Krebs
and Guido Senden. The book token goes to Guido Senden. The following solution contains
ideas from various solutions.
For a positive integer n, let I(n) denote the number of 1’s in its binary expansion. For two
positive integers a,b, we denote by (ab)2 the positive integer obtained by concatenating the
binary expansions of a and b. We remark that if a,b can be transformed into x,y, respectively,
then (ab)2 can be transformed into x +y, by placing a + between a and b.

Lemma 3. Every positive integer n can be transformed into every integer x with I(n) ≤ x ≤
3
2 I(n).
Proof. One transforms n into I(n) by placing + at every position. Omitting a + after a 1 that has
a + before it raises the sum by 1, as 2 = (1 + 0) + 1 and 3 = (1 + 1) + 1. This can be done at least⌊

1
2 I(n)

⌋
times, by omitting the plus after every other 1. �
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3 2dlog2 I(n)e ≤ I(n) ≤ 2dlog2 I(n)e can be transformed
into 2dlog2 I(n)e.

The following proposition, in combination with Corollary 4 now shows that we only need to
consider the cases where I(n) ∈ {4,5,8,9,10}.

Proposition 5. Suppose that all positive integers n with 8 ≤ I(n) ≤ 16 can be transformed into
16. Let k ≥ 4, and letn be a positive integer with 2k−1 ≤ I(n) ≤ 2k. Thenn can be transformed
into 2k.
Proof. We proceed by induction. For k = 4, this is exactly our assumption. Suppose that
the proposition is true for k = i, and let n be a positive integer with 2i ≤ I(n) ≤ 2i+1. Write
n = (ab)2 with I(a) =

⌊
1
2 I(n)

⌋
and I(b) =

⌈
1
2 I(n)

⌉
. Then 2i−1 ≤ I(a) ≤ I(b) ≤ 2i, so a,b can

both be transformed into 2i, hence n can be transformed into 2i+1, as desired. �

We will now first treat the easiest of the remaining cases, i.e. I(n) ∈ {4,8,10}.

Lemma 6. Any positive integer n such that I(n) = 4 can be transformed into 8.

Proof. Write n = (ab)2 with a consisting of the first three bits of n. If a starts with (11)2, then
a = 8− I(b), and b can be transformed into I(b) by Lemma 3, so n can be transformed into 8.
If a starts with (10)2, then a = 7− I(b), and b can be transformed into I(b) + 1 by Lemma 3, as
I(b) ≥ 2. We deduce that n can be transformed into 8. �

Corollary 7. Any positive integer n such that I(n) ∈ {8,10} can be transformed into 16.
Proof. Write n = (ab)2, with I(a) = 4. Then both a and b can be transformed into 8 by Lemma 6
and Corollary 4, so n can be transformed into 16. �

Finally, we do the case I(n) ∈ {5,9}, which requires considering more cases.

Lemma 8. Any positive integer n such that I(n) = 5 can be transformed into a power of 2. If n
does not start with (11)2, then n can be transformed into 8.
Proof. First suppose that n starts with (11)2. Then write n = (ab)2, where a consists of the first
four bits of n. If a starts with (111)2, then a = 16− I(b), and b can be transformed into I(b) by
Lemma 3, so n can be transformed into 16. If a starts with (110)2, then a = 15 − I(b), and b
can be transformed into I(b) + 1 by Lemma 3, as I(b) ≥ 2. Hence n can be transformed into 16.
Otherwise n starts with (10)2. In this case, write n = (ab)2, where a = (10)2 consists of the
first two bits of n. Now I(b) = 4, which can be transformed into 6 by Lemma 3, so n can be
transformed into 8. �

Lemma 9. Any positive integer n such that I(n) = 9 can be transformed into 16.
Proof. First suppose that n starts with (11)2. Write n = (ab)2 with a consisting of the first
three bits of n. Then a = 4 + I(a) = 13 − I(b). As I(b) ≥ 6, we have 3 ≤ 1

2 I(b). Hence
I(b) ≤ I(b) + 3 ≤ 3

2 I(b), so b can be transformed into I(b) + 3. We deduce that n can be
transformed into 16.
Otherwise n starts with (10)2. Write n = (ab)2 in this case, with a containing the first 5 ones of
n, and b containing the last 4 ones. Then by Lemmas 6 and 8, a and b can both be transformed
into 8, so n can be transformed into 16. �

Remark. As Pieter de Groen and Guido Senden remarked, one can prove very quickly that any
positive integer can be reduced to 1 in at most 3 steps, once one has Corollary 4. For this, note
that the remaining cases are those for which 2dlog2 I(n)e−1 < I(n) < 2

3 2dlog2 I(n)e. The smallest
such case is I(n) = 5. Then one can transform n into 3

2 · 2dlog2 I(n)e−1 instead by Lemma 3, as
3
2 >

4
3 , so

I(n) < 2
3 · 2dlog2 I(n)e = 4

3 · 2dlog2 I(n)e−1 < 3
2 · 2dlog2 I(n)e−1 < 3

2 I(n).

The number 3
2 · 2dlog2 I(n)e−1 can then be transformed into 2 as I(n) ≥ 5, which can then be

transformed into 1, showing that any positive integer can be reduced to 1 in at most three steps.
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Problem 2013-1/C Let R be a commutative ring with 1. Consider the set

S =
{

(i, j) ∈ R2 : i2 = i, j2 = j, ij = 0
}
.

Show that the cardinality of S is a power of 3 if S is finite.

Solution We received solutions from Florian Eisele, Thijmen Krebs and Guido Senden. The book
token goes to Florian Eisele. The following solution is partly based on that of Florian Eisele and
Thijmen Krebs.
Let us write S(R) for the set S corresponding to a (commutative unital) ring R. First note that for
all idempotents i ∈ R (i.e. elements i ∈ R with i2 = i) we have (i,0) ∈ S(R). Hence the set of
idempotents I(R) of R is finite if S is finite, so we can proceed by induction on the number of
idempotents n(R) of R. Note that 0,1 ∈ R both are idempotents for all rings R, so n(R) ≥ 1,
and if n(R) = 1, then R is the zero ring, for which S(R) = {(0,0)}, hence #S(R) = 30. If n(R) = 2,
then I(R) = {0,1}, therefore S(R) = {(0,0), (1,0), (0,1)}, and #S(R) = 31.
Now let k > 2, and suppose that for all rings R with n(R) < k, the set S(R) has cardinality a
power of 3. Let R be a ring with n(R) = k. As n(R) > 2, there exists an i ∈ I(R) with i 6∈ {0,1}.
Let j = 1−i, then j ∈ I(R), and ij = 0. Then the mapϕ : R → R/iR×R/jR,x 7→ (x+iR,x+jR)

is an isomorphism of rings by the Chinese Remainder Theorem. Note thatϕ induces a bijection
I(R) → I(R/iR)× I(R/jR), therefore also a bijection S(R) → S(R/iR)× S(R/jR).
As j is non-zero, it induces a non-zero idempotent in (R/iR)×(R/jR). It follows that j+iR 6= 0, so
n(R/iR) > 1 and similarly (using i+jR) alson(R/jR) > 1, hencen(R/iR), n(R/jR) < n(R) = k.
It follows that #S(R/iR),#S(R/jR) are powers of 3, hence so is #S(R) = #S(R/iR)#S(R/jR).
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On Problem 2013-1/A. We would like to thank Jan Stevens for pointing out that Problem
2013-1/A in fact originated from his work (see [1]), and that there is a connection with
Coxeter’s frieze patterns (see [2, 3]).
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