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Edition 2012-2 We received solutions from Wouter Cames van Batenburg (Leiden), Cor Hurkens
(Eindhoven), Thijmen Krebs (Nootdorp), José H. Nieto (Maracaibo) and Hans Zantema (Eind-
hoven).

Problem 2012-2/A Let P and Q be distinct points in the plane. Let n ≥ 2. Assume n distinct
lines through P but not through Q are given, as well as n distinct lines through Q but not
through P . Let T be a collection of 2n intersection points of these lines. Suppose that the
(unoriented) angle between the lines RP and RQ is the same for all R in T , and not a multiple
of 1

4π . Show that T can be partitioned into subsets of at least three elements each, such that
every subset consists of the vertices of a regular polygon.

Rectification. The common angle in this problem should not be a multiple of π/4. (Thanks to
Thijmen Krebs for pointing this out.)

Solution We received a correct solution from Thijmen Krebs.
All angles are oriented angles modulo π , unless stated otherwise. Let α be the unoriented
angle modulo π of the common angle of the ∠PRQ, where R ∈ T .

Observation 1. Every line through P (resp.Q) contains exactly two points of T .

Proof. Let L be a line through P . As Q is not on this line, there is a unique isosceles triangle
with base inside L, top Q, and base angles α. Hence there are at most two points of T on any
given line through P . But since we have n lines going through P , and #T = 2n, it must follow
that every line must contain exactly two points of T . The same argument holds forQ. �

Observation 2. The set T is a subset of the union of two distinct circles intersecting at P andQ.
Proof. Note that by the inscribed angle theorem, the subset T+ of T consisting of the points
R ∈ T such that ∠PRQ = α lies on a circle Γ+ containing P andQ, and that the subset T− of T
consisting of the points R ∈ T such that ∠PRQ = −α also lies on a circle Γ− containing P and
Q. Moreover, these circles are distinct since α 6= 1

2π by assumption. �

We now define two maps fP , fQ : T+ → T− as follows. LetR ∈ T+. Then fP (R) (resp. fQ(R)) is the
unique intersection point of the lineRP (resp. RQ) with Γ− not equal to P (resp.Q). This map is
well-defined, as for R ∈ T+, we have ∠PfP (R)Q = ∠PfQ(R)Q = −α, hence fP (R), fQ(R) ∈ T−
by Observation 1.

Observation 3. The maps fP and fQ are bijections. In particular, #T+ = #T− = n.

Proof. We simply note that the inverse is given by sending R ∈ T− to the unique intersection
point of the line RP (resp. RQ) with Γ+ not equal to P (resp.Q). �

Observation 4. The maps f−1
P fQ and fQf−1

P are rotations by 4α (as an oriented angle modulo
2π) on T+ and T−, respectively (with centres those of Γ+ and Γ−, respectively).

Proof. Let R ∈ T+. Then ∠PRQ = ∠QfQ(R)P = α, it follows that ∠RPf−1
P fQ(R) = ∠RPfQ(R) =

2α. Hence if C+ is the centre of Γ+, then ∠RC+f−1
P fQ(R) = 4α, as an oriented angle modulo 2π .

The same argument works for fQf−1
P . �

Now we note that the orbits of T+ (resp. T−) under the action of f−1
P fQ (resp. fQf−1

P ) all have
the same length by the above, which hence dividesn, so it follows that f−1

P fQ and fQf−1
P have

order dividing n. Hence 4nα = 0 modulo 2π , so α = 0 modulo π/2n. As we assumed that
α was not a multiple of 1

4π , it follows that orbits of length at most 2 cannot occur. Orbits of
higher length are sets whose vertices form a regular polygon with at least three vertices, so we
are done.

Problem 2012-2/B Show that there exist an n ≥ 1, a polynomial P ∈ Z[X,Y1, . . . , Yn] and an
infinite set S of positive integers such that the set



295 295

295 295

Problemen NAW 5/13 nr. 4 december 2012 295

Op
lo

ss
in

ge
n So

lu
ti

on
s

{
(y1, . . . , yn) ∈ Zn : P (k,y1, . . . , yn) = 0

}

is empty for all k < 0 and has precisely k elements for all k ∈ S.

Solution We received a correct solution from Thijmen Krebs.
An example can be deduced from Jacobi’s four-square theorem. It states that for each positive
integer p, the number of solutions (y1, y2, y3, y4) ∈ Z4 to

y2
1 +y2

2 +y2
3 +y2

4 = p

is r4(p) = 8
∑
d∈D d, whereD is the set of divisors of p that are not multiples of 4. In particular,

if p is prime we have r4(p) = 8(p + 1).
Set n = 4 and let P ∈ Z[X,Y1, Y2, Y3, Y4] be the polynomial

P = 8(Y 2
1 + Y 2

2 + Y 2
3 + Y 2

4 + 1)−X.

Define S = {8(p + 1) : p prime}. The equation P (k,y1, y2, y3, y4) = 0 has no solutions for
k < 0. For k = 8(p + 1) ∈ S the equation reduces to y2

1 +y2
2 +y2

3 +y2
4 = p, which has r4(p) = k

solutions.

Problem 2012-2/C Is it possible to tile a 30 by 30 square grid using the following blocks?

2

The same argument works for fQf
−1
P . 

Now we note that the orbits of T+ (resp. T−) under the action of f−1
P fQ (resp.

fQf
−1
P ) all have the same length by the above, which hence divides n, so it follows

that f−1
P fQ and fQf

−1
P have order dividing n. Hence 4nα = 0 modulo 2π, so α = 0

modulo π/2n. As we assumed that α was not a multiple of 1
4π, it follows that orbits

of length at most 2 cannot occur. Orbits of higher length are sets whose vertices
form a regular polygon with at least three vertices, so we are done.

2. 2012-2/B

Show that there exist an n ≥ 1, a polynomial P ∈ Z[X,Y1, . . . , Yn] and an infinite
set S of positive integers such that the set


(y1, . . . , yn) ∈ Zn : P (k, y1, . . . , yn) = 0



is empty for all k < 0 and has precisely k elements for all k ∈ S.
We received a correct solution from Thijmen Krebs.
An example can be deduced from Jacobi’s four-square theorem. It states that

for each positive integer p, the number of solutions (y1, y2, y3, y4) ∈ Z4 to

y21 + y22 + y23 + y24 = p

is r4(p) = 8


d∈D d, where D is the set of divisors of p that are not multiples of 4.
In particular, if p is prime we have r4(p) = 8(p+ 1).

Set n = 4 and let P ∈ Z[X,Y1, Y2, Y3, Y4] be the polynomial

P = 8(Y 2
1 + Y 2

2 + Y 2
3 + Y 2

4 + 1)−X.

Define S = {8(p + 1) : p prime}. The equation P (k, y1, y2, y3, y4) = 0 has no
solutions for k < 0. For k = 8(p+1) ∈ S the equation reduces to y21+y22+y23+y24 = p,
which has r4(p) = k solutions.

3. 2012-2/C

Is it possible to tile a 30 by 30 square grid using the following blocks?

We received correct solutions from Wouter Cames van Batenburg, Cor Hurkens,
Thijmen Krebs, José H. Nieto, and H. Zantema. The book token goes to José
H. Nieto.

Solution We received correct solutions from Wouter Cames van Batenburg, Cor Hurkens, Thijmen
Krebs, José H. Nieto and Hans Zantema. The book token goes to José H. Nieto.
There exists a tiling as desired. In fact, we can already tile a 10× 10 grid.

3

There exists a tiling as desired. In fact, we can already tile a 10× 10 grid.

Note that we do not even need both types of Z-tiles.
More generally, an n×m grid can be tiled with the given pieces if and only if n

and m are at least 4, nm is divisible by 4, and (n,m) is not (6, 6), (6, 10), or (10, 6).Note that we do not even need both types of Z-tiles.
More generally, an n ×m grid can be tiled with the given pieces if and only if n and m are at
least 4, nm is divisible by 4, and (n,m) is not (6,6), (6,10) or (10,6).


