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Edition 2011-3 We received solutions from Pieter de Groen (Brussel), Alex Heinis (Hoofddorp),
Tejaswi Navilarekallu (Amsterdam), Hendrik Reuvers (Maastricht) and Albert Stadler (Herrliberg).

Problem 2011-3/A Fix a point P in the interior of a face of a regular tetrahedron ∆. Show that ∆
can be partitioned in four congruent convex polyhedra such that P is a vertex of one of them.

Solution We received solutions from Pieter de Groen, Alex Heinis, Tejaswi Navilarekallu and
Hendrik Reuvers. The book token goes to Hendrik Reuvers.
Let A, B, C and D be the vertices of ∆. Define σ1 = (AB)(CD) to be the rotation of ∆ that
interchanges A with B and C with D. Similarly write σ2 = (AC)(BD) and σ3 = (AD)(BC). Then
V4 = {id, σ1, σ2, σ3} is a subgroup of the symmetry group of ∆.
Let Pa, Pb, Pc and Pd be the images of P under V4 in the faces BCD, CDA, DAB and ABC,
respectively. (For example, if P lies in face ABC, then P = Pd.) Let Z be the orthocenter of∆. Define Qab to be the intersection point of AB with the plane through Z, Pc and Pd, and
analogously defineQac ,Qad,Qbc ,Qbd andQcd.
Now the four polyhedra

APbPcPdQabQacQadZ,

BPcPdPaQbcQbdQabZ,

CPdPaPbQcdQacQbcZ,

DPaPbPcQadQbdQcdZ

cover ∆ and are congruent, as they are mapped onto each other by the symmetries in V4. The
polyhedra are convex since each of them is the intersection of six half-spaces, three of which
are defined by a plane containing a face of ∆ and three by a plane through Z.

Problem 2011-3/B Let n be a positive integer. Show that 3n divides the numerator of

n∑
k=1

4k− 1
2k(2k− 1)

9k.

Solution We received solutions from Alex Heinis, Tejaswi Navilarekallu and Albert Stadler. The
book token goes to Albert Stadler.
We use the fact that if q ∈ Q has denominator not divisible by 3, then q can be reduced modulo
3k for all positive integers k.
Since 2 log(1− 3x) = log(1− 6x + 9x2) as complex functions, we have the following identity of
power series:

2
∞∑
k=1

3kxk

k
=

∞∑
k=1

3k(2x − 3x2)k

k
. (1)

The coefficients (in x) of these power series are rational numbers. Since for all k ≥ 1 we have
k ≤ 3k, it follows that the denominator of 3k/k is not divisible by 3, and hence that none of the
coefficients of these power series have denominator divisible by 3.
In particular, we can reduce these coefficients modulo 3n. For all k ≥ 2n we have that 3n

divides the numerator of 3k/k, so we obtain from (1) the congruence

2n∑
k=1

2 · 3kxk

k
≡

2n∑
k=1

3k(2x − 3x2)k

k
(mod 3n).

By substituting x = 1, we obtain the following identity modulo 3n:
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0 ≡
2n∑
k=1

2 · 3k − (−3)k

k

≡
n∑
k=1

32k

2k− 1
+

n∑
k=1

32k

2k

≡
n∑
k=1

( 1
2k− 1

+
1

2k

)
9k

≡
n∑
k=1

4k− 1
2k(2k− 1)

9k.

Hence 3n divides the numerator of

n∑
k=1

4k− 1
2k(2k− 1)

9k,

as desired.
One can also prove identity (2) for x = 1 by looking at the so-called 3-adic logarithms of −2

and 4 on the 3-adic integers, see for example the book p-adic Numbers: An Introduction by
F.Q. Gouvea.

Problem 2011-3/C Let n > 1 be an integer. Show that there are no non-linear complex
polynomials f (X) such that

fn(X)−X = (f ◦ f ◦ · · · ◦ f )(X)−X

is divisible by (f (X)−X)2.

Solution We received a solution from Alex Heinis, who wins the book token.
Assume f satisfies the condition. Put g(X) := f (X)−X.
We claim that

fn(X)−X ≡ g(X)
(

1 + f ′(X) + · · · + f ′(X)n−1
)

modulo g(X)2 for all n ≥ 1.
Clearly the claim holds for n = 1. Assume it holds for n = N − 1. Using that for all polynomials
a we have

f (X + g(X)a) ≡ f (X) + g(X)af ′(X) (mod g(X)2),

we find

fN (X)−X ≡ f (fN−1(X)−X +X)−X
≡ f (X + g(X)(1 + f ′(X) + · · · + f ′(X)N−2))−X
≡ g(X) + f ′(X)g(X)(1 + f ′(X) + · · · + f ′(X)N−2)

≡ g(X)(1 + f ′(X) + · · · + f ′(X)N−1),

which proves the claim.
Since g(X)2 divides fn(X)−X we find that g(X) divides

1 + f ′(X) + · · · + f ′(X)n−1 =
f ′(X)n − 1
f ′(X)− 1

.

Let x ∈ C be a root of g(X). From the above equation we find that f ′(x)n = 1. We claim that
f ′(x) 6= 1, and in particular that x is a simple root of g(X). To see this, assume that f ′(x) = 1.
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s Let k be the multiplicity of x as a root of f ′(X)− 1. Then x must be a root of multiplicity k + 1

of f ′(X)n − 1, and hence a k-fold root of its derivative nf ′(X)n−1f ′′(X). But since f ′(x) = 1 it
follows that the multiplicity of x as a root of f ′′(X) is k, a contradiction.
Now assume that f is not linear. Clearly f cannot be constant, so the degree of f is at least 2,
and hence also the degree of g is at least 2. But then the residue theorem gives

0 =
∑

g(x)=0

1
g′(x)

=
∑

g(x)=0

1
f ′(x)− 1

,

where the sums range over all roots x of g(X). Since f ′(x)n = 1 for all such x, we have that
all the f ′(x) lie on the unit circle. In particular, the real part of the right-hand side is strictly
negative, a contradiction.


