Problem Section

Gabriele Dalla Torre Jinbi Jin Ronald van Luijk Lenny Taelman Wouter Zomervrucht Problemenrubriek NAW Mathematisch Instituut Universiteit Leiden Postbus 9512 2300 RA Leiden problems@nieuwarchief.nl www.nieuwarchief.nl/problems

Redactie:

Johan Bosman

Edition 2011-3 We received solutions from Pieter de Groen (Brussel), Alex Heinis (Hoofddorp), Tejaswi Navilarekallu (Amsterdam), Hendrik Reuvers (Maastricht) and Albert Stadler (Herrliberg).

Problem 2011-3/A Fix a point *P* in the interior of a face of a regular tetrahedron Δ . Show that Δ can be partitioned in four congruent convex polyhedra such that *P* is a vertex of one of them.

Solution We received solutions from Pieter de Groen, Alex Heinis, Tejaswi Navilarekallu and Hendrik Reuvers. The book token goes to Hendrik Reuvers.

Let *A*, *B*, *C* and *D* be the vertices of Δ . Define $\sigma_1 = (AB)(CD)$ to be the rotation of Δ that interchanges *A* with *B* and *C* with *D*. Similarly write $\sigma_2 = (AC)(BD)$ and $\sigma_3 = (AD)(BC)$. Then $V_4 = \{id, \sigma_1, \sigma_2, \sigma_3\}$ is a subgroup of the symmetry group of Δ .

Let P_a , P_b , P_c and P_d be the images of P under V_4 in the faces *BCD*, *CDA*, *DAB* and *ABC*, respectively. (For example, if P lies in face *ABC*, then $P = P_d$.) Let Z be the orthocenter of Δ . Define Q_{ab} to be the intersection point of *AB* with the plane through Z, P_c and P_d , and analogously define Q_{ac} , Q_{ad} , Q_{bc} , Q_{bd} and Q_{cd} . Now the four polyhedra

 $AP_bP_cP_dQ_{ab}Q_{ac}Q_{ad}Z,$ $BP_cP_dP_aQ_{bc}Q_{bd}Q_{ab}Z,$ $CP_dP_aP_bQ_{cd}Q_{ac}Q_{bc}Z,$ $DP_aP_bP_cQ_{ad}Q_{bd}Q_{cd}Z$

cover Δ and are congruent, as they are mapped onto each other by the symmetries in V_4 . The polyhedra are convex since each of them is the intersection of six half-spaces, three of which are defined by a plane containing a face of Δ and three by a plane through Z.

Problem 2011-3/B Let *n* be a positive integer. Show that 3^n divides the numerator of

$$\sum_{k=1}^{n} \frac{4k-1}{2k(2k-1)} 9^k.$$

Solution We received solutions from Alex Heinis, Tejaswi Navilarekallu and Albert Stadler. The book token goes to Albert Stadler.

We use the fact that if $q \in \mathbb{Q}$ has denominator not divisible by 3, then q can be reduced modulo 3^k for all positive integers k.

Since $2\log(1 - 3x) = \log(1 - 6x + 9x^2)$ as complex functions, we have the following identity of power series:

$$2\sum_{k=1}^{\infty} \frac{3^k x^k}{k} = \sum_{k=1}^{\infty} \frac{3^k (2x - 3x^2)^k}{k}.$$
 (1)

7

The coefficients (in x) of these power series are rational numbers. Since for all $k \ge 1$ we have $k \le 3^k$, it follows that the denominator of $3^k/k$ is not divisible by 3, and hence that none of the coefficients of these power series have denominator divisible by 3.

In particular, we can reduce these coefficients modulo 3^n . For all $k \ge 2n$ we have that 3^n divides the numerator of $3^k/k$, so we obtain from (1) the congruence

$$\sum_{k=1}^{2n} \frac{2 \cdot 3^k x^k}{k} \equiv \sum_{k=1}^{2n} \frac{3^k (2x - 3x^2)^k}{k} \pmod{3^n}.$$

By substituting x = 1, we obtain the following identity modulo 3^n :

Solutions Ś

$$0 \equiv \sum_{k=1}^{2n} \frac{2 \cdot 3^k - (-3)^k}{k}$$
$$\equiv \sum_{k=1}^n \frac{3^{2k}}{2k - 1} + \sum_{k=1}^n \frac{3^{2k}}{2k}$$
$$\equiv \sum_{k=1}^n \left(\frac{1}{2k - 1} + \frac{1}{2k}\right) 9^k$$
$$\equiv \sum_{k=1}^n \frac{4k - 1}{2k(2k - 1)} 9^k.$$

Hence 3^n divides the numerator of

$$\sum_{k=1}^{n} \frac{4k-1}{2k(2k-1)} 9^k,$$

as desired.

One can also prove identity (2) for x = 1 by looking at the so-called *3-adic logarithms* of -2 and 4 on the *3-adic integers*, see for example the book *p-adic Numbers: An Introduction* by F.Q. Gouvea.

Problem 2011-3/C Let n > 1 be an integer. Show that there are no non-linear complex polynomials f(X) such that

$$f^n(X) - X = (f \circ f \circ \cdots \circ f)(X) - X$$

is divisible by $(f(X) - X)^2$.

Solution We received a solution from Alex Heinis, who wins the book token. Assume f satisfies the condition. Put g(X) := f(X) - X. We claim that

$$f^{n}(X) - X \equiv g(X) \left(1 + f'(X) + \dots + f'(X)^{n-1} \right)$$

modulo $g(X)^2$ for all $n \ge 1$.

Clearly the claim holds for n = 1. Assume it holds for n = N - 1. Using that for all polynomials a we have

$$f(X+g(X)a) \equiv f(X)+g(X)af'(X) \pmod{g(X)^2},$$

we find

$$f^{N}(X) - X \equiv f(f^{N-1}(X) - X + X) - X$$

$$\equiv f(X + g(X)(1 + f'(X) + \dots + f'(X)^{N-2})) - X$$

$$\equiv g(X) + f'(X)g(X)(1 + f'(X) + \dots + f'(X)^{N-2})$$

$$\equiv g(X)(1 + f'(X) + \dots + f'(X)^{N-1}),$$

which proves the claim.

Since $g(X)^2$ divides $f^n(X) - X$ we find that g(X) divides

$$1 + f'(X) + \dots + f'(X)^{n-1} = \frac{f'(X)^n - 1}{f'(X) - 1}.$$

Let $x \in \mathbb{C}$ be a root of g(X). From the above equation we find that $f'(x)^n = 1$. We claim that $f'(x) \neq 1$, and in particular that x is a simple root of g(X). To see this, assume that f'(x) = 1.

7

Solutions

Let *k* be the multiplicity of *x* as a root of f'(X) - 1. Then *x* must be a root of multiplicity k + 1 of $f'(X)^n - 1$, and hence a *k*-fold root of its derivative $nf'(X)^{n-1}f''(X)$. But since f'(x) = 1 it follows that the multiplicity of *x* as a root of f''(X) is *k*, a contradiction.

Now assume that f is not linear. Clearly f cannot be constant, so the degree of f is at least 2, and hence also the degree of g is at least 2. But then the residue theorem gives

$$0 = \sum_{g(x)=0} \frac{1}{g'(x)} = \sum_{g(x)=0} \frac{1}{f'(x) - 1},$$

where the sums range over all roots x of g(X). Since $f'(x)^n = 1$ for all such x, we have that all the f'(x) lie on the unit circle. In particular, the real part of the right-hand side is strictly negative, a contradiction.

7