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Problem 2010-4/A Show that there are infinitely many prime numbers p for which there is a
positive integer n with

2n
2+1 ≡ 3n (mod p).

Also, show that there are infinitely many prime numbers p for which there is no such n.

Solution We received a correct solution from R. Kortram, Charles Delorme, Alex Heinis, Rik Bos,
Rob van der Waall and Thijmen Krebs. The book token goes to Rik Bos.
Let P be the set of primes that divide at least an element of the form 2n

2+1−3n withn a positive
integer. The set P is nonempty, because it contains 23, and we will prove that it has infinitely
many elements.
Suppose, by contradiction, that P is a nonempty finite set of primes containing 23 and let n be∏
p∈P (p − 1). Since n is greater than 1, the integer 2n

2+1 − 3n has at least one prime factor q
different from 2 and 3. Then, by Fermat’s little theorem we get

2n
2+1 − 3n ≡ 1 mod q,

contradicting the fact that q divides 2n
2+1 − 3n. Therefore, the set P contains infinitely many

elements.
Let p be a prime such that p ≡ 19 mod 24. By quadratic reciprocity neither 2 nor 3 is a square
modulo p. Since n2 + 1 and n have different parity for every positive integer n, the congruence
2n

2+1 ≡ 3n mod p has a square on one side and a non-square on the other one. Hence, it
cannot hold and p is not contained in P . By Dirichlet’s theorem on arithmetic progressions
there are infinitely many primes congruent to 19 modulo 24. This proves the second part of the
problem.

Problem 2010-4/B Letf : R → R be a continuous function that has a local minimum or maximum
at every point of R. Show that f is constant.

Solution We received a correct solution or reference from R. Kortram, Charles Delorme, Shai
Como, José Nieto, Anton Schep, Alex Heinis, Paolo Perfetti, and Thijmen Krebs. The book token
goes to Alex Heinis.
Indeed, the following result can be found in several places in the literature.

Proposition. For any function f : R → R, there are at most countably many s ∈ R for which f
has a local extreme value s at some point in R.

Proof. Let S be the set of values s ∈ R for which f has a local maximum s at some point in R.
For each s ∈ S we can choose rational numbers a < b such that the absolute maximum of f on
the interval (a,b) equals s. This yields an injective map S → Q× Q sending s to (a,b), so S is
countable. The same holds for the set of values of f at local minima.
Now let f be as given in the problem. If f is not constant, then by the intermediate value
theorem f takes uncountably many values, contradicting the proposition.

Problem 2010-4/C Let f : Q × Q → Q be a function such that for all a ∈ Q the functions
x 7→ f (a,x) and x 7→ f (x,a) are polynomial functions from Q to Q. Is it true that f is given by
a polynomial in two variables? What if we replace Q by R?
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and Anton Schep. This solution is based on the one by José Nieto, who wins the book token.
For the case f : Q × Q → Q the answer is no. The following is a counterexample. Since Q is
countable, there exists an enumeration a1, a2, a3, . . . of Q. Now define

fn(x) =
n∏
i=1

(x − ai)

for n ≥ 1, and

f (x,y) =
∞∑
n=1

fn(x)fn(y).

This is well-defined on Q×Q, since fn(ai) equals 0 for n ≥ i. Furthermore, the specialisation

f (x,ak) = f (ak, x) =
k−1∑
n=1

n∏
i=1

(ak − ai)(x − ai)

is a polynomial in x of degree k− 1, so f satisfies the conditions. If f were a polynomial in x
and y, of a certain total degree d, then f (x,ad+2) would be of degree at most d. Yet we have
seen that f (x,ad+2) has degree d + 1. We conclude that f is not a polynomial.
Now suppose f : R× R → R is as stated. We will prove that in this case f is indeed given by a
polynomial. The elements

pn = x(x − 1) · · · (x −n + 1), n ≥ 0

form a linear basis of the polynomial ring R[x], so for all a ∈ R we can write f (x,a) as a finite
linear combination of the polynomials pn. Hence there are functions cn : R → R such that the
equality

f (x,y) =
∞∑
n=0

cn(y)pn(x) (1)

holds for all x,y ∈ R, while for each a ∈ R, we have cn(a) = 0 for all but finitely many n. The
assumption that for each r ≥ 0, the function

f (r ,y) =
r∑
n=0

r !
(r −n)!

cn(y)

is a polynomial in y, shows by induction on n that cn(y) is a polynomial for each n ≥ 0. We
now claim that cn is identically zero for almost all n ≥ 0. Assume that there are infinitely many
n ≥ 0 such that the polynomial cn is non-zero. Each of these polynomials has finitely many
zeros, so together they have at most countably many. On the other hand, for all a ∈ R at least
one (in fact infinitely many) of these non-zero polynomials has a zero at a, giving uncountably
many zeros. This contradiction proves the claim, so (1) shows that f is itself a polynomial.
R.A. Kortram and Anton Schep refer to the article ‘Some Analogues of Hartog’s Theorem in an
Algebraic Setting’ by R.S. Palais, American Journal of Mathematics, Vol. 100. It contains a proof
of the following, slightly more general fact: the statement of this problem holds for a field k if
and only if k is finite or uncountable.


