Edition 2009-4 We received submissions from Pieter de Groen (Brussel) and Thijmen Krebs (Nootdorp).

Problem 2009-4/A Is there a polynomial with rational coefficients whose minimum on the real line is $\sqrt{2}$?

Solution This problem was solved by Pieter de Groen and Thijmen Krebs. Pieter de Groen receives the book token.

We will show that Krebs' polynomial $f(x) = g(x^2)$ with

$$g(x) = \frac{1}{8}(3x^4 - 2x^3 - 12x^2 + 12x + 12)$$

is such a polynomial. Indeed, note that the derivative of *g* satisfies $4g'(x) = 3(x^2 - 2)(2x - 1)$, so that g(x) has local minima at $x = \pm\sqrt{2}$ and a local maximum at $x = \frac{1}{2}$. From $g(0) > g(\sqrt{2})$ we conclude that the minimum of *g* on the interval $[0, \infty)$ equals $g(\sqrt{2}) = \sqrt{2}$. It follows that the minimum of $f(x) = g(x^2)$ on the real line equals $\sqrt{2}$ as well.

Problem 2009-4/B Are there infinitely many positive integers whose positive divisors sum to a square?

Solution Suppose there are only finitely many such integers and let N > 1 be a common multiple. For any $x \in \mathbf{R}$, let S(x) denote the set of all prime powers p^r with $p \le x$ prime and $r \ge 1$ the smallest integer for which p^r does not divide N.

For every integer n, let $\sigma(n) = \sum_{d|n} d$ be the sum of the divisors of n. The function σ is weak multiplicative, meaning that $\sigma(mn) = \sigma(m)\sigma(n)$ whenever m and n are coprime. Let q be any prime larger than $\sigma(m)$ for all $m \in S(N)$ and let t denote the number of primes up to and including q. For all t prime powers $m = p^r \in S(q)$ with p prime, the prime divisors of $\sigma(m)$ are smaller than q; for $p \leq N$ this follows by definition of q, while for p > N it follows from the fact that $\sigma(m) = p + 1$ is even, so all its prime divisors are at most (p + 1)/2 < q.

We conclude that the \mathbf{F}_2 -subspace of $\mathbf{Q}^*/\mathbf{Q}^{*2}$ generated by the elements $\sigma(m)$ for all $m \in S(q)$ is contained in the subspace generated by all primes smaller than q, which has dimension t-1. This implies that the t elements $\sigma(m)$ for $m \in S(q)$ are linearly dependent, so there exists a nonempty subset $T \subset S(q)$ such that for $n = \prod_{m \in T} m$ the weak multiplicativity of σ yields $\sigma(n) = \prod_{m \in T} \sigma(m) = 1 \in \mathbf{Q}/\mathbf{Q}^{*2}$. Therefore $\sigma(n)$ is a square, which contradicts the fact that n is not a divisor of N. This proves that there are infinitely many integers whose divisors sum to a square.

Problem 2009-4/C For which odd positive integers *n* do there exist an odd integer k > n and a subset $S \subset \mathbb{Z} / k\mathbb{Z}$ of size *n* such that for every non-zero element $r \in \mathbb{Z} / k\mathbb{Z}$ the cardinality of the intersection $S \cap (S + r)$ is even? What about even *n*?

Solution This problem was solved by Thijmen Krebs, who receives the book token. The following solution of the problem is based on his solution.

We claim that for $n \equiv 2 \mod 4$ and for $n \equiv 3 \mod 4$ there does not exist any odd integer k with the requested property, whereas for $n \equiv 0 \mod 4$ and for $n \equiv 1 \mod 4$ there exists such an odd integer k.

We denote by \overline{r} the residue class of the integer r in $\mathbb{Z} / k\mathbb{Z}$.

Firstly, we suppose $n \equiv 2 \mod 4$ or $n \equiv 3 \mod 4$. For any candidates *k* and *S* and any $r \in \mathbb{Z} \setminus k\mathbb{Z}$ we have

$$|S \cap (S + \overline{r})| = |S \cap (S - \overline{r})| \equiv 0 \mod 2.$$

14

By summing over all $r \in 1, ..., k - 1$ we get

Problem Section

Redactie: Johan Bosman Gabriele Dalla Torre Ronald van Luijk Lenny Taelman

Problemenrubriek NAW Mathematisch Instituut Postbus 9512, 2300 RA Leiden problems@nieuwarchief.nl www.nieuwarchief.nl/problems

$$n(n-1) = \sum_{r=1}^{k-1} |S \cap (S+\bar{r})| = \sum_{r=1}^{(k-1)/2} (|S \cap (S+\bar{r})| + |S \cap (S-\bar{r})|) \equiv 0 \mod 4.$$

This proves the first part of our claim.

Now we will show that for $n \equiv 0 \mod 4$ and for $n \equiv 1 \mod 4$ there exists such an odd integer *k*. Let *A* be the set {0,1,2,4}. If n = 4 then it is easy to check by hand that for k = 7 the subset \overline{A} of $\mathbb{Z} / 7\mathbb{Z}$ satisfies the requested property.

If $n \equiv 0 \mod 4$ we pick any odd integer *h* greater than n/4 and any subset $B \subseteq \{0, \ldots, h-1\}$ of cardinality n/4. We claim that we can choose k = 7h and $S = \{ha + b \mod 7h : a \in A, b \in B\}$. For any $r \in \mathbb{Z} / 7h\mathbb{Z}$ we have

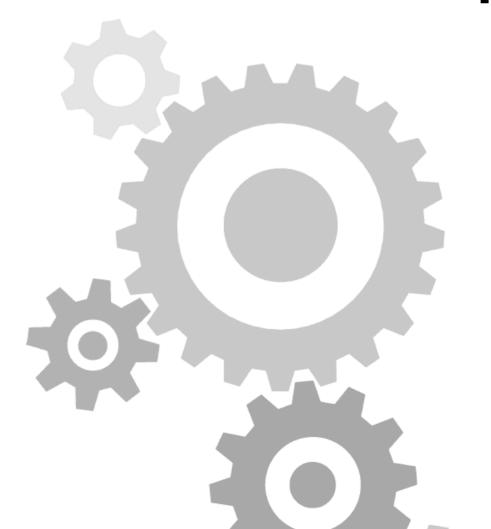
$$S \cap (S+r)| = \sum_{(b,c) \in B \times B} \left| (\overline{hA}) \cap (\overline{hA+r+b-c}) \right| =$$
$$= \sum_{\substack{(b,c) \in B \times B \\ r \equiv c-b \mod h}} \left| (\overline{hA}) \cap \left(\overline{hA+h\frac{(r+b-c)}{h}} \right) \right|$$

All the terms in the last sum are even and equal to either 2 or 4, because it is equal to what we have computed in the case n = 4 and k = 7, namely the cardinality of the intersection between the sets \overline{A} and $\overline{A + \frac{(r+b-c)}{h}}$ in $\mathbb{Z}/7\mathbb{Z}$. Now we suppose $n \equiv 1 \mod 4$ and let A and B be the sets $\{0, \dots, (n-1)/2\}$ and $\{1, 2\}$,

Now we suppose $n \equiv 1 \mod 4$ and let *A* and *B* be the sets $\{0, \ldots, (n-1)/2\}$ and $\{1, 2\}$, respectively. We claim that we can choose $k = \frac{3(n+1)}{2}$ and $S = \{3a + b \mod k : a \in A, b \in B\} \setminus \{1 \mod k\}$. For any $r \in \mathbb{Z} \setminus k\mathbb{Z}$ we have

$$|S \cap (S+\overline{r})| = \sum_{(b,c) \in B \times B} \left| \overline{3A} \cap (\overline{3A+r+b-c}) \right| - \left|S \cap (\overline{1+r})\right| - \left|S \cap (\overline{1-r})\right|.$$

Note that the sum $\sum_{(b,c)\in B\times B} \left|\overline{3A} \cap (\overline{3A+r+b-c})\right|$ is equal to (n+1) if $r \equiv 0 \mod 3$ and to (n+1)/2 if $r \not\equiv 0 \mod 3$. We can conclude by observing that in the first case $\overline{1+r} \in S$ if and only if $\overline{1-r} \notin S$.



14