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Star problems. In the June 2008 edition of the NAW we revisited a selection of unsolved
star problems. Whoever sent in a solution first before July 1, 2009 would receive a book
token. In this and upcoming editions we will publish some of the solutions we have
received.

Problem (Star) 2008-2/3 Let A and B be n × n matrices over C . Suppose that
limk→∞(Ak + Bk) exists. Show that there exists M ∈ C n×n such that limk→∞ Ak − kM
and limk→∞ Bk + kM exist. Give necessary and sufficient conditions on A and B for M
to be zero.

Solution This problem was solved by Alex Heinis and Wim Hesselink. As Wim Hesselink
sent in a solution first, he will receive the prize. The following is based on both solutions.
Clearly the matrix M is unique, if it exists. For any linear map f : C n → C n, the vec-
tor space C n is the direct sum of the generalized eigenspaces E f ,λ = ker( f − λ)n for
eigenvalues λ of f by the theory of Jordan normal forms.
Lemma 1. For any linear map f on C n we have limk f k = 0 if and only if every eigenvalue
λ of f satisfies |λ| < 1.
Proof. The only-if part being obvious, we assume that every eigenvalue λ of f satisfies
|λ| < 1. Let λ be such an eigenvalue. Then the restriction fλ of f to the generalized
eigenspace E f ,λ can be written as λ · id + m, with mn = 0. We get f k

λ = ∑ j<n
(k

j
)
λk− jm j,

which tends to 0, because in each term
(k

j
)

only grows polynomially in k. We conclude
that f tends to 0. �
Lemma 2. Every eigenvalue λ of A or B satisfies |λ| < 1 or λ = 1.
Proof. For two sequences (Xk)k and (Yk)k of matrices we write Xk ∼ Yk if limk(Xk −Yk) =
0. Set C = limk(Ak + Bk). Then we have

C − Ak+1 ∼ Bk+1 ∼ B(C − Ak) = BC − BAk ,

and therefore limk(B − A)Ak = (B − I)C. Let x ∈ C n be an eigenvector for A with
eigenvalue λ. Then λk(Bx − λx) = (B − A)Akx converges, namely to (B − I)Cx. We
conclude that either |λ| < 1 or λ = 1, or Bx = λx = Ax, in which case 2λkx = (Ak + Bk)x
converges, and we also find |λ| < 1 or λ = 1. The statement for eigenvalues of B follows
from symmetry. �
Let a and b denote the linear maps on C n defined by multiplication by A and B respec-
tively, whose eigenvalues are given in the previous lemma. Let p, m, r : C n → C n be the
unique linear maps that equal 0, 0, and a, respectively, on the generalized eigenspaces
Ea,λ of a associated to eigenvalues λ with |λ| < 1, while their restrictions to Ea,1 equal id,
a− id, and 0 respectively. In other words, with respect to the decomposition

C n ∼= Ea,1 ⊕

 ⊕
|λ|<1

Ea,λ


the maps p, m, r are given as

p =
(

id 0
0 0

)
, m =

(
a − id 0

0 0

)
, r =

(
0 0
0 a

)
.

Then m is nilpotent, we have a = p + m + r, and the identities

p2 = p, pm = m = mp, pr = mr = 0 = rm = rp, limkrk = 0

hold, the latter by Lemma 1. Similarly, we may write b = q + l + s where l is nilpotent
and

q2 = q, ql = l = lq, qs = ls = 0 = sl = sq, limksk = 0.

Of course the decomposition in generalised eigenspaces for a and b are not necessarily
the same. We have

ak + bk = rk + sk + p + q + ∑
1≤ j<n

(
k
j

)
(l j + m j).



285 285

285 285

Problemen NAW 5/11 nr. 4 december 2009 285

Op
lo

ss
in

ge
n So

lu
ti

on
s As this has a limit and limk rk = limk sk = 0, we find that all terms l j + m j for 1 ≤

j ≤ n vanish. In particular, l + m = 0 and l2 + m2 = 0, so that l = −m and m2 = 0.
We conclude ak = p + rk + km and bk = q + sk − km, so that limk ak − km = p and
limk bk + km = q. The first statement of the problem follows for the matrix M associated
to m. The matrix M is zero if and only if the restriction of a to the generalized eigenspace
Ea,1 is the identity.

Problem (Star) 2008-2/11 Let V be the complex vector space of all functions f : C → C.
Let W be the smallest linear subspace of V with the properties:
• the function f (z) = z belongs to W,
• for all f ∈ W, | f | ∈ W.
Does f (z) = z belong to W?

Solution The following solution is due to David Preiss (Warwick), and was communicat-
ed to us by Miklos Laczkovich. Since the solution was already known, there is no prize
winner.
We will show that f (z) = z does not belong to W. We claim that it suffices to show that
there is a complex vector space S of complex valued functions on the circle R/2πZ with
the properties that
• h(x) = eix belongs to S,
• for all h ∈ S, |h| ∈ S,
• h(x) = cos(x) does not belong to S.
Indeed, if the function f (z) = z is in W, then the function

eix + f (eix)
2

= cos(x)
belongs to S.
Construction of S. Let U be the family of regions U = {x + iy : ψ(x) < y < φ(x)}, where
φ,ψ : R → R are continuous, ψ ≤ 0 < φ and {x : ψ(x) = 0} is locally finite in R.
Let H be the set of functions F on C for which there is a region U ∈ U so that F is
holomorphic on U, and such that there is an a < 1 with lim supz∈U,|z|→∞ |F(z)|/|z|a = 0.
Let F be the set of continuous functions f : R/2πZ → R with the property that there
exist a positive integer n and functions F1 , . . . , Fn ∈ H (with corresponding regions
U1 , . . . , Un ∈ U) and open intervals I1 , . . . , In covering the circle minus a finite number
of points so that cos x ∈ U j and f (x) = Fj(cos x) for all 1 ≤ j ≤ n and all x ∈ I j.
Let S be the set of all functions R/2πZ → C of the form f + ig + ceix where f , g ∈ F and
c ∈ C. The set S is a linear subspace of the complex vector space of all complex-valued
functions on the circle.
Clearly h(x) = eix is an element of S.
Proof that S is closed under h 7→ |h|. Let h be a function in S, and write h as

h(x) = Fj(cos x) + iG j(cos x) + ceix

on the open interval I j, with Fj , G j ∈ H. Let a j < 1 be such that
lim sup

z ∈U j ,|z|→∞|F(z)|/|z|a j = 0 and lim sup
z∈U j ,|z|→∞|G(z)|/|z|a j = 0.

Assuming, as we may, that sin x does not change sign on any I j, we have that on each
I j, |h(x)|2 = H j(cos x) where H j is a linear combination of 1, F2

j , G2
j , Fj(z)z, Fj(z)γ(z),

G j(z)z, G j(z)γ(z), where γ is a suitable branch of
√

1− z2. Removing from I j the finite
set where h(x) = 0 we have that on each remaining interval |h| coincides with a branch
of H1/2

j and one verifies that |h| ∈ F, where the constant can be taken to be (a + 1)/2.

Proof that h(x) = cos x does not belong to S. Assume that cos x = f (x) + ig(x) + ceix

where c ∈ C and f , g ∈ F. Writing c = u + iv and using that f , g are real, we get
f (x) = (1− u) cos x + v sin x, g(x) = −v cos x− u sin x. For any interval I on which we
can use the definition of f , g ∈ F (and on which sin x 6= 0) we therefore have F, G ∈ H
and U ∈ U so that F(z) = (1− u)z + vγ(z) and G(z) = −vz− uγ(z), where γ is a branch
of
√

1− z2 on U. We have that
lim sup

|z| →∞,z∈U

|F(z)|
|z| = lim sup

|z|→∞,z∈U

|((1 − u)z + vγ(z))|
|z| =

√
(1 − u)2 + v2 .

Since this limit has to be zero we conclude that u = 1 and v = 0. A similar argument for
G gives that u = v = 0, a contradiction.
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Problem (Star) 2008-2/1 Let the continuous function f1 : (0, 1] → C be such that

∫ 1

0
f1(t)dt

exists (and is finite) as an improper Riemann integral. Prove that f1 has a unique exten-
sion to f : R + → C that is
• continuous on R +,
• differentiable on (1, ∞) and satisfies the differential-difference equation

f ′(x) = − 1
x

f (x − 1) (x > 1). (1)

Also, determine

lim
x→∞ x f (x).

Finally, show that, if
∫ 1

0 f1(t)dt = f1(1), then the series ∑∞
n=0 n f (n) and the integral

∫ ∞
0

f (t)dt

both converge absolutely and have the same value.

Solution We received solutions from Joris Bierkens and J. Arias de Reyna & J. van de
Lune. Joris Bierkens will receive the prize.
The following solution is based on the one given by Bierkens.
Define the functions fn : (n − 1, n] → C inductively, by

fn(x) := fn−1(n − 1)−
∫ x

n−1

1
t

fn−1(t − 1)dt,

and glue them to a function f on R +. By the properties of the Riemann integral, this f is
continuous on R + and differentiable on (1, ∞) and it satisfies the differential-difference
equation (1). If g : R + → C is another function with these properties, then we see that
g′(t) = f ′(t) on (1, 2]. From f (1) = g(1) we conclude f = g on (1, 2]. Repeating this
argument it follows that g = f everywhere on R +.
In order to determine limx→∞ x f (x), note that (1) implies

(x f (x))′ = f (x)− f (x − 1). (2)

Therefore

lim
x→∞ x f (x) = f (1) +

∫ ∞
1

(x f (x))′dx = f1(1)−
∫ 1

0
f1(x)dx,

provided that the limit limx→∞ x f (x) exists.
For the last part of the problem, integrate (2) to obtain the recursion∫ n+1

n
f (t)dt =

∫ n

n−1
f (t)dt + (n + 1) f (n + 1)− n f (n) (n ≥ 1).

Now suppose
∫ 1

0 f1(t)dt = f1(1). This recursion implies
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∫ n

n−1
f (t)dt = n f (n). (3)

We have for n > 1∫ n+1

n
| f (t)|dx =

∫ n+1

n

∣∣∣∣ f (n)−
∫ x

n

1
t

f (t − 1)dt
∣∣∣∣ dx

≤ | f (n)|+
∫ n+1

n

1
n

∫ n+1

n
| f (t − 1)|dtdx

≤ 1
n

∫ n

n−1
| f (t)|dt +

1
n

∫ n+1

n
| f (t − 1)|dt =

2
n

∫ n

n−1
| f (t)|dt.

So, by the ratio test, the series

∞
∑

n=1

∫ n

n−1
| f (t)|dt

converges. Since we have

∞
∑

n=1
|n f (n)| =

∞
∑

n=1

∣∣∣∣∫ n

n−1
f (t)dt

∣∣∣∣ ≤ ∫ ∞
0

| f (t)|dt =
∞
∑

n=1

∫ n

n−1
| f (t)|dt,

we conclude that both ∑∞
n=0 n f (n) and

∫ ∞
0 f (t)dt converge absolutely, and from (3) it

follows that they have the same limit.

Problem (Star) 2008-2/4 Let p : [0, 1] → R be a continuous function with p(t) ≥ 0 for
all t ∈ [0, 1] and

∫ 1
0 p(t)dt = 1. Does the function f : C → C given by

f (z) = ez −
∫ 1

0
p(t)eztdt

have infinitely many zeroes?

Solution We received solutions from R.A. Kortram and J. Arias de Reyna & J. van de
Lune. R.A. Kortram will receive the prize.
The following solution is based on the one given by Kortram.
We shall prove that the answer is ‘yes’. The function f has a Taylor series expansion
given by

f (z) =
∞
∑

n=1
an

zn

n!

with an = 1 −
∫ 1

0 tn p(t)dt. The coefficients an are real and satisfy 0 < an < 1 so for all
r ∈ R >0 we have

Mr( f ) := max
|z|=r

| f (z)| = f (r) < er . (4)

This shows that f is of order (at most) 1: the order of the entire function f is the infimum
of all m such that f (z) = O(e|z|

m
) as z → ∞.

From now on, assume that f has only finitely many zeroes z1 , . . . , zN with multiplicities
e1 , . . . , eN . Hadamard’s factorization theorem tells us how an entire function of given
order can be expressed as product in terms of its zeroes and leads in our case to
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f (z) = φ(z)eλz+µ with φ(z) =
N

∏
j=1

(z − z j)e j

for certain λ, µ ∈ C . Since the Taylor coefficients of f are real, we have φ(z) ∈ R [z],
λ ∈ R and eµ ∈ R and hence there is a real number c with

f (z) = cφ(z)eλz .

Now put g(z) =
∫ 1

0 p(t)eztdt = ez − f (z). We have

g(z) =
∞
∑

n=0
bn

zn

n!
with bn =

∫ 1

0
tn p(t)dt > 0.

Hence for r ∈ R >0 we have

Mr(g) := max
|z|=r

|g(z)| = g(r) = er − f (r) = er − cφ(r)eλr .

The fact that f (0) = 0 implies deg(φ) ≥ 1; combining this with (4) we get λ < 1. So
there is an R ∈ R such that for all r > R we have Mr(g) > er/2.
Choose ε < 1/4 and δ ∈ [0, 1) with

∫ 1
δ p(t)dt < ε. Then also

∫ 1
δ tn p(t)dt < ε. Choose K

with δK < ε. For n ≥ K we have

∫ δ

0
tn p(t)dt ≤ δn

∫ δ

0
p(t)dt ≤ δn

∫ 1

0
p(t)dt < ε

and thus bn < 2ε.
For r ≥ R we get the following inequality:

er/2 < Mr(g) = g(r) <
K−1

∑
n=0

bn
rn

n!
+ 2ε

∞
∑

n=K

rn

n!
<

K−1

∑
n=0

bn
rn

n!
+ 2ε · er ,

which is a contradiction for large r.
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Star Problems. In the June 2008 issue, we revisited a selection of unsolved star problems.
The first correct solution submitted before July 1, 2009 would earn a book token. In this
issue, we publish the last solution that we have received.

Problem (Star) 2008-2/7 For n = 1, 2, 3, . . . we define the function Φn : R → R by

Φn(x) = (2n)x − (2n − 1)x + (2n − 2)x − (2n − 3)x + · · · + 2x − 1.

Prove or disprove that for all x ∈ R and for all n
1. Φ′

n(x) > 0;
2. Φ′′

n(x) > 0.
What can be said about higher derivatives?

Solution We received an ingenious solution from Juan Arias de Reyna and Jan van
de Lune, who are awarded the prize. They show that Φ′

n and Φ′′
n are strictly positive,

but that there is an x so that Φ′′′
n (x) < 0. We limit ourselves to giving a sketch of

their solution.
Proof that Φ′

n and Φ′′
n are strictly positive.

First of all, we may restrict ourselves to x < 0, since for x ≥ 0 it is clear that all the
derivatives of Φn(x) are positive.
Denote the first derivative of −Φn(−x) by φn and the second derivative of Φn(−x) by
ψn. We need to show that

φn(x) =
log 2

2x − log 3
3x + · · · − log(2n − 1)

(2n − 1)x +
log(2n)
(2n)x > 0

and

ψn(x) =
(log 2)2

2x − (log 3)2

3x + · · · − (log(2n − 1))2

(2n − 1)x +
(log(2n))2

(2n)x > 0

for all n and for all x > 0.
The theory of Dirichlet series gives an entire function η(s) so that

lim
n →∞φn(s) = η′(s)

and

lim
n →∞ψn(s) = −η′′(s)

for all positive real s. (For s > 1 this is trivial, by the absolute convergence of the series
∑n(−1)nn−s.) In fact η(s) = (1− 21−s)ζ(s), where ζ(s) is the Riemann zeta function.
Assume that there exists an n and an x > 0 so thatφn(x) (resp. ψn(x)) is non-positive. It
is not too hard to show that this implies that

η′(x) ≤ 0

respectively

η′′(x) ≥ 0.

It therefore suffices to show that η′(x) > 0 and η′′(x) < 0 for all x > 0.
First, one shows that for all x such that

x > 2
log(log(3)) − log(log(2))

log(3) − log(2)
≈ 2.2718

and all k > 0, one has (log(2k))2

(2k)x ≥ (log(2k + 1))2

(2k + 1)x .

If follows that η′′(x) is negative for all x > 2.2718.
The rest of the argument depends on the following inequality
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∣∣ ≤ B(s) :=
3 + 6s

(1 + s)3 (x ≥ s > 0), (1)

the proof of which we postpone.
Now one verifies numerically that

η′′(0) ≈ −0.06103 < 0,

so that by the maximal slope principle and the inequality (1) one finds

η′′(x) < 0, for all x <
−η′′(0)

B(0)
≈ 0.020343

Repeating this about 20 times one finds η′′(x) < 0 for all x between 0 and 2.28, from
which we conclude that η′′(x) < 0 for all positive x, this finishes the proof for the second
derivative.
For the first derivative, observe that since η′′ < 0 we have that η′ is strictly decreasing.
But it is easy to check that η′(x) is positive for all x sufficiently large, therefore η′(x) > 0
for all x.
Proof of (1). We now sketch how to prove the crucial inequality (1).
Let E : R → R be the “triangle wave” function of period 2 which satisfies E(x) = 2x−1

4
for 0 ≤ x ≤ 1 and E(x) = 3−2x

4 for 1 ≤ x ≤ 2. One shows that

η(s) =
1
2

+
s
4

+ s(s + 1)
∫ ∞

1

E(x)
xs+2 dx.

Computing the third derivative of this, and using |E(x)| ≤ 1
4 one finds

|η′′′(s)| ≤ 3 + 6s
(1 + s)3

and the desired inequality follows by noting that the right-hand side is decreasing for
s > 0.
Higher derivatives. If Φ′′′

n were strictly positive for all x > 0 then it would follow that
η′′′(x) ≥ 0 for all x ≥ 0. But one can verify numerically that

η′′′(0) ≈ −0.02347468,

a contradiction. �


