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For Edition 2007/2 we received submissions from Kee-Wai Lau, Ronald Kortram, Hans
Montanus, H.F.H. Reuvers, Lieke de Rooij, and Arne Smeets.

Problem 2007/2-A
1. Find the largest number c such that all natural numbers n satisfy n

√
2− bn

√
2c ≥ c

n .
2. For this c, find all natural numbers n such that n

√
2− bn

√
2c = c

n .

Solution This problem was solved by Kee-Wai Lau, Hans Montanus, and Arne Smeets.
The solution below is based on that of Kee-Wai Lau.

We first show that n
√

2 − bn
√

2c >
√

2/(4n) for all natural numbers n. Since
√

2 is
irrational, we have n

√
2 > bn

√
2c, 2n2 > bn

√
2c2 and so 2n2 − bn

√
2c2 ≥ 1. Hence

n
√

2 − bn
√

2c =
2n2 − bn

√
2c2

n
√

2 + bn
√

2c
≥ 1

n
√

2 + bn
√

2c
>

1

n
√

2 + n
√

2
=
√

2
4n

.

Next we show that the constant
√

2/4 cannot be replaced by any larger number. For
natural numbers m, let

am =
(
√

2 + 1)2m−1 + (
√

2 − 1)2m−1

2
√

2
.

By using the binomial theorem we see that am and

am
√

2 − (
√

2 − 1)2m−1 =
(
√

2 + 1)2m−1 − (
√

2 − 1)2m−1

2

are positive integers. Since am
√

2 − 1 < am
√

2 − (
√

2 − 1)2m−1 < am
√

2, we have
bam

√
2c = am

√
2− (

√
2− 1)2m−1. Hence

2a2
m − bam

√
2c2 = 2a2

m −
(

am
√

2 − (
√

2 − 1)2m−1
)2

= 1

and

am

(
am
√

2 − bam
√

2c
)

=
am

am
√

2 + bam
√

2c
=

am

2
√

2am − (
√

2 − 1)2m−1
,

which tends to
√

2/4 as m tends to infinity. This completes the solution.

Problem 2007/2-B Find polynomials f (x) and g(x) such that

∫ x

0

6tdt√
t4 + 4t3 − 6t2 + 4t + 1

= log
(

f (x) + g(x)
√

x4 + 4x3 − 6x2 + 4x + 1
)

.

Solution This problem was solved by Ronald Kortram, Lieke de Rooij and Arne Smeets.
The solution below is based on that of Arne Smeets.

Let

p(x) = x4 + 4x3 − 6x2 + 4x + 1.

Deriving the given equality with respect to x and rewriting the result gives

6x√
p(x)

=
2
√

p(x) f ′(x) + 2p(x)g′(x) + p′(x)g(x)
2
√

p(x) f (x) + 2p(x)g(x)
,

or, equivalently,(
f ′(x) − 6xg(x)

)
2
√

p(x) +
(
2p(x)g′(x) + p′(x)g(x) − 12x f (x)

)
= 0.
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ization domain, that

f ′(x) = 6xg(x),

2p(x)g′(x) = 12x f (x)− p′(x)g(x).

The first equation implies that deg f (x)−deg g(x) = 2. Let n = deg g(x) and let α and β

be the coefficients of xn+2 and xn in f (x) and g(x), respectively. The first equation implies
that (n + 2)α = 6β, while the second implies that 2nβ = 12α − 4β, or (n + 2)β = 6α.
Consequently n = 4 and α = β. Let

f (x) = a6x6 + a5x5 + a4x4 + a3x3 + a2x2 + a1x + a0 ,

g(x) = b4x4 + b3x3 + b2x2 + b1x + b0 .

The two equations given above imply the following relations between the coefficients:

6a6 = 6b4

5a5 = 6b3

4a4 = 6b2

3a3 = 6b1

2a2 = 6b0

a1 = 0

32b4 + 6b3 = 12a5 − 12b4 − 4b3

−48b4 + 24b3 + 4b2 = 12a4 + 12b4 − 12b3 − 4b2

32b4 − 36b3 + 16b2 + 2b1 = 12a3 − 4b4 + 12b3 − 12b2 − 4b1

8b4 + 24b3 − 24b2 + 8b1 = 12a2 − 4b3 + 12b2 − 12b1 − 4b0

6b3 + 16b2 − 12b1 = 12a1 − 4b2 + 12b1 − 12b0

4b2 + 8b1 = 12a0 − 4b1 + 12b0

2b1 = −4b0 .

The solutions (
a6 , a5 , a4 , a3 , a2 , a1 , a0 , b4 , b3 , b2 , b1 , b0

)
of this system of linear equations are proportional to(

1, 12, 45, 44,−33, 0, 43, 1, 10, 30, 22,−11
)

.

Finally, setting x = 0 leads to the condition f (0) + g(0) = a0 + b0 = 1, so that

f (x) =
1

32

(
x6 + 12x5 + 45x4 + 44x3 − 33x2 + 43

)
,

g(x) =
1

32

(
x4 + 10x3 + 30x2 + 22x− 11

)
.

On Problem B of NAW 5/8 nr. 2 juni 2007, by Bas Edixhoven
The aim of this short note is to give some indication of the interesting and well-known
theoretical background of this problem. Let h(x) denote the polynomial x4 + 4x3 − 6x2 +
4x + 1. The problem is then to find polynomials f (x) and g(x) such that:∫

6xh(x)−1/2dx = log( f (x) + g(x)h(x)1/2).

The left-hand side is an example of an elliptic integral: the function to be integrated is a
rational function in x and the square root of a polynomial of degree 3 or 4 in x. Only
very special elliptic integrals can be expressed in terms of elementary functions as is the
case here (the interested reader is advised to consult the Wikipedia page on this subject).
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algebraic geometry, and, in particular, of a Riemann surface (the possibly intimidated
reader is kindly asked not to stop reading at this point).
We let E0 be the solution set in C 2 of the equation y2 = h(x). The projection from E0
to C that sends (a, b) to a is a two-to-one map, except at the a’s with h(a) = 0. Using
Euclid’s algorithm one finds that h(x) and h′(x) have no common zeros. This implies that
E0 is non singular: the gradient (−h′(x), 2y) of the function y2 − h(x) has no common
zero with y2 − h(x) itself. A complex analytic version of the implicit function theorem
then shows that every point P of E0 has an open neighborhood U that is analytically
isomorphic to a small disk D around 0 in C ; any function z : U → D that gives such an
isomorphism is then called a coordinate at P.
In the theory of analytic functions, one often completes (or compactifies) C (with coordi-
nate x, say) to the so-called Riemann sphere P 1(C ) by adding one point, called ∞. In
fact, one takes another copy of C with coordinate u, say, and glues the two copies along
their subsets C − {0} by identifying a in the x-copy with a−1 in the u-copy.
We want to complete E0 in a similar way. In (C − {0})×C , E0 is given by the equation

y2 = h(x) = h(u−1),

and hence also by (u2 y)2 = u4h(u−1).
We let k(u) be the polynomial u4h(u−1) (this happens to be h(u) but that is just a coin-
cidence). We let E∞ be the solution set in C 2 (with coordinates u and v) of the equation
v2 = k(u). The projection from E∞ to C that sends (c, d) to c is two-to-one except at
the four zeros of k(u), and E∞ is non-singular as well. We glue E0 and E∞ along their
subsets where the first coordinate is non-zero by identifying (a, b) in E0 with (a−1 , ba−2)
in E∞. The result is a compact Riemann surface that we call E, with a map to P 1(C ).
As an oriented surface, it can be seen that E is a torus. Such Riemann surfaces are called
elliptic curves (the interested reader can again consult Wikipedia). Just as on the Riemann
sphere, meromorphic functions are rational functions (quotients of functions given by
polynomials in x and y (or in u and v)).

The three pictures show, topologically, how the Riemann surface E , a torus, is mapped to the Riemann sphere. The map is
the quotient for the rotation over 180 degrees about the axis that is shown in the first picture. As this rotation interchanges
the ‘front half’ and the ‘back half’ of E , the quotient is obtained by identifying the boundary points in the way shown in
the second picture. This has the effect of closing the two ends of the cylinder, giving a (deformed) sphere. The third picture
shows this sphere, with the images of the two boundary circles drawn a bit fatter, on the equator. The four endpoints of
these two segments, drawn still fatter, are the four ramification points.

One also has the notion of meromorphic differential form. Such a form ω gives for each
local coordinate z : U → D ⊂ C a differential form Fdz, with F a meromorphic function
on U. For example, any meromorphic function F on E gives the form dF which in a local
coordinate is just F′dz, where F′ is the derivative of F with respect to z. In terms of power
series, or, in fact, Laurent series, if F = ∑n Fnzn then F′ = ∑n nFnzn−1; here the Fn are
in C , zero for n sufficiently negative.
Problem B can now be stated as follows: find a meromorphic function F on E such that
(dF)/F = (6xdx)/y.
Let P be in E, and z a local coordinate at P. Then we can write, uniquely, in a neighbor-
hood of P:

(6xdx)/y = znP Gdz = znP+1G(dz)/z,

with G = ∑n≥0 Gnzn and G0 6= 0. The integer nP is called the order of (6xdx)/y at P, and
the complex number G−1−nP is called the residue of (6xdx)/y at P (if −1− nP is negative,
the residue is zero).
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s Suppose that (6xdx)/y = (dF)/F, with F a meromorphic function on E. For P in E, and

z a local coordinate at P, we can write, uniquely, in a neighborhood of P:

F = zmP H, with H = ∑
n≥0

Hnzn and H0 6= 0,

and hence

(dF)/F = (dzmP )/(zmP ) + (dH)/H = mP(dz)/z + (dH)/H.

As H0 6= 0, the order of (dH)/H at P is ≥ 0, and so it follows that the order of (dF)/F at
P is −1 precisely at the P with mP 6= 0, with residue mP.
It is a standard exercise to find all P where nP is negative. One finds that this happens at
the points P+ and P− in E∞ with u(P±) = 0 and v(P±) = ±1, and that nP± = −1. Indeed,
as a coordinate at these points one can take the function u, and one simply computes:

(6xdx)/y = 6u−1d(u−1)/(vu−2) = (−6/v)(du)/u.

This means that F must have order 6 at P−, order −6 at P+, and no poles or zeros outside
{P+ , P−}. The theory of elliptic curves (see Wikipedia for more information) shows that
such a function F, if it exists, is unique up to a multiplicative constant, and that the
existence is equivalent to the difference P+ − P−, in the so-called group law of E, being
of finite order, dividing 6. As this group is isomorphic to a product of two circles, we
conclude that this property of P+ − P− is very special indeed.
Let us end by mentioning that the explanation above does not make the calculations
found in the solution of Problem B easier, but that it does help in understanding what is
happening. In particular, such a calculation becomes more than just a manipulation of
formulas; one can understand what one is doing. This year, the Dutch national master-
math program (see www.mastermath.nl) contains two courses on elliptic curves, one in
the Fall of 2007 (late news, unfortunately) and one in the Spring of 2008.

Problem 2007/2-C Consider the following game with persons A and B. Player A receives
a random number uniformly distributed between 0 and 1. Player B receives two random
numbers uniformly distributed between 0 and 1, and chooses the highest one. Each
player can then choose to discard his number and receive a new random number between
0 and 1, in order to get a higher number. This choice is made without knowing the
other player’s number or whether the other player chose to replace his number. The
player with the highest number wins. What strategy should the players follow to ensure
they will win the game? What is the probability that person B wins the game? See also
domino.research.ibm.com/Comm/wwwr ponder.nsf/challenges/Februari2007.html

Solution This problem was solved by Hans Montanus, H.F.H. Reuvers and Lieke de
Rooij. The solution below is based on that of Hans Montanus.
Let g be the boundary under which player A chooses to discard his number. We have the
following stochastic variables for player A: X is the first number, Y is the new number, if
it exists, and V is the final choice. That is, V = X if X ≥ g and V = Y if X < g.
For 0 ≤ v < g, the distribution function of V is

f (v) = lim
∆v→0

P(v < V < v + ∆v)
∆v

= lim
∆v→0

P(X < g) · P(v < Y < v + ∆v)
∆v

= lim
∆v→0

g · ∆v
∆v

= g.

For g < v ≤ 1, it is

f (v) = lim
∆v→0

P(v < V < v + ∆v)
∆v

= lim
∆v→0

P(v < X < v + ∆v) + P(X < g) · P(v < Y < v + ∆v)
∆v

= 1 + g.

Let h be the boundary under which player B chooses to discard his number. For player B
we use the following stochastic variables: X is the first number, Y is the second number,
Z is the new number, if it exists, and W is the final choice.
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s For 0 ≤ w < h, the distribution function of W is

f (w) = lim
∆w→0

P(w < W < w + ∆w)
∆w

= lim
∆w→0

P(X < h) · P(Y < h) · P(w < Z < w + ∆w)
∆w

= h2 .

For h < w ≤ 1, it is

f (w) = lim
∆w→0

{P(X < w) · P(w < Y < w + ∆w)
∆w

+
P(Y < w) · P(w < X < w + ∆w)

∆w

+
P(X < h) · P(Y < h) · P(w < Z < w + ∆w)

∆w
} = 2w + h2 .

If h ≥ g, the probability P1(B) that player B wins is

P1(B) =
∫ 1

0
P(V < w) f (w)dw

=
∫ g

0
P(V < w)h2dw +

∫ h

g
P(V < w)h2dw +

∫ 1

h
P(V < w)(h2 + 2w)dw.

Substituting
P(V < w|w < g) =

∫ w

0
f (v)dv =

∫ w

0
gdv = gw

and P(V < w|w > g) =
∫ g

0
gdv +

∫ w

g
(1 + g)dv = w − g + gw,

gives

P1(B) =
∫ g

0
gwh2dw +

∫ h

g
(w− g + gw)h2dw +

∫ 1

h
(w− g + gw)(h2 + 2w)dw

=
2
3
− 1

3
g +

1
2

h2 − 2
3

h3 +
1
2

gh2 − 2
3

gh3 +
1
2

g2h2 .

If h ≤ g, the probability P2(B) that player B wins is

P2(B) =
∫ 1

0
P(V < w) f (w)dw

=
∫ h

0
P(V < w)h2dw +

∫ g

h
P(V < w)(h2 + 2w)dw +

∫ 1

g
P(V < w)(h2 + 2w)dw.

Once more substituting

P(V < w|w < g) = gw and P(V < w|w > g) = w− g + gw,

we find

P2(B) =
∫ h

0
gwh2dw +

∫ g

h
gw(h2 + 2w)dw +

∫ 1

g
(w− g + gw)(h2 + 2w)dw

=
2
3
− 1

3
g +

1
2

h2 +
1
3

g3 − 1
2

gh2 − 2
3

gh3 +
1
2

g2h2 .

The probability P(B) that player B wins satisfies P(B) = P1(B) if h ≥ g and P(B) = P2(B)
if h ≤ g. For any value of g (0 ≤ g ≤ 1), P(B) attains a maximum. If h ≥ g, the
maximum lies on the curve h = (1 + g + g2)/(2 + 2g) (using ∂P1(B)/∂h = 0); if h ≤ g, it
lies on the curve h = (1 − g + g2)/(2g) (using ∂P2(B)/∂h = 0). These two curves meet
at the point (g, h) = ((−1 +

√
5)/2, (−1 +

√
5)/2). At this intersection point, P1(B)

has a local minimum (4 −
√

5)/3 on the curve h = (1 + g + g2)/(2 + 2g) (0 < g ≤
(−1 +

√
5)/2); P2(B) has an absolute minimum on the curve h = (1 − g + g2)/(2g)

((−1 +
√

5)/2) ≤ g ≤ 1, at a saddle point. This saddle point satisfies ∂P2(B)/∂g = 0,
that is, g2 + gh2 − 1

3 −
1
2 h2 − 2

3 h3 = 0. Substituting h = (1 − g + g2)/(2g) leads to the
equation

4g6 + 15g5 + 12g4 − 15g3 + 3g − 2 = 0.

The polynomial 4g6 + 15g5 + 12g4 − 15g3 + 3g− 2 appears to be irreducible. A numer-
ical approximation of the roots gives one positive real root, namely g = 0, 6488849...,
with corresponding value of h equal to 0, 5949951... .
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first is less than 0, 6488849... and player B asks for a new number if his first two are both
less than 0, 5949951.... Substituting these values in the expression for P2(B) we find that
the probability that player B wins is 0, 587003....


