Problem Section

Eindredactie: Matthijs Coster Redactieadres: Problemenrubriek NAW Mathematisch Instituut Postbus 9512 2300 RA Leiden uwc@nieuwarchief.nl

Edition 2006/2

For Session 2006/2 We received submissions from Toon Brans, Ruud Jeurissen, Jaap Spies, and Peter Vandendriessche.

Problem 2006/2-A Prove or disprove the following:

In a 9×9 Sudoku–square one randomly places the numbers $1 \dots 8$. There is at least one field such that if any one of the numbers $1 \dots 9$ is placed there, the Sudoku–square can be filled in to a (not necessarily unique) complete solution.

Solution This problem was solved by Toon Brans, Ruud Jeurissen, and Peter Vandendriessche. Their solutions were comparable.

We disprove the statement as follows: If the numbers 1...8 are placed on the main diagonal from the top left corner towards the bottom right, there is no field where a number between 1 and 8 can be placed without giving a contradiction. In the first row the 1 cannot be placed, in the second row no 2 is possible, ..., in the eighth row no 8. This is the case for the columns as well. In the field in the lower right corner no 8 is possible.

Problem 2006/2-B Imagine a flea circus consisting of *n* boxes in a row, numbered 1, 2, . . , *n*. In each of the first *m* boxes there is one flea ($m \le n$). Each flea can jump forward to boxes at a distance of at most d = n - m. For all fleas all d+1 jumps have the same probability.

The director of the circus has marked m boxes as special targets. On his sign all m fleas jump simultaneously (no collisions).

1. Calculate the probability that after the jump exactly *m* boxes are occupied.

2. Calculate the probability that all *m* marked boxes are occupied.

Solution No solutions were sent in. The solution below is based on that of the proposer Jaap Spies.

Part 1

The jumps of the fleas correspond to a bipartite graph *G*. The possible jumps of the fleas can be coded in a (0,1)-matrix *B* of size *m* by *n*, with $b_{ij} = 1$ if and only if $i \le j \le i + d$. The total number of jumps with exactly *m* boxes occupied is the same as the number of injective maps $\pi : \{1, ..., m\} \rightarrow \{1, ..., n\}$ for which $b_{i\pi(i)} = 1$ for all *i*. This number equals per (*B*), the permanent of *B*, see [1], p. 44. The probability that after the jump exactly *m* boxes are occupied is therefore per $(B)/(d+1)^m$.

Part 2

Let *A* be the set of marked boxes, then $A = \{a_1, a_2, ..., a_m\}$ is a subset of $\{1, 2, ..., n\}$ with $1 \le a_1 < a_2 \cdots < a_m \le n$ and $0 < m \le n$. A successful jump of the fleas can be associated with a bijection $\pi : \{1, ..., m\} \to A$ such that $i \le \pi(i) \le i + d$ for all *i*. The number of such successful jumps is equal to the permanent of the (0, 1)-matrix *C*, of size *m* by *m*, defined by $c_{ij} = 1$ if and only if $i \le a_j \le i + d$. The probability that after the jump the *m* marked boxes are occupied is per $(C)/(d+1)^m$.

References

Brualdi, H.J. Ryser, Combinatorial Matrix Theory, Cambridge University Press, 1991.
The Dancing School Problems: http://www.jaapspies.nl/mathfiles/problems.html

Problem 2006/2-C We are given two measurable spaces (X, \mathcal{A}) and (Y, \mathcal{B}) plus a sub- σ -algebra \mathcal{C} of \mathcal{A} . We are also given a real-valued function f on $X \times Y$ that is measurable with respect to the σ -algebra $\mathcal{A} \otimes \mathcal{B}$ (generated by the family $\{A \times B : A \in \mathcal{A}, B \in \mathcal{B}\}$). Furthermore, each horizontal section f_y is measurable on X with respect to \mathcal{C} . Prove or disprove: f is measurable with respect to $\mathcal{C} \otimes \mathcal{B}$.

29

29

Solutions SIN

Solution No solutions were sent in. The solution below is based on that of the proposer Klaas Pieter Hart.

Here is a counterexample. Let $X = Y = \omega_1$, the first uncountable ordinal. Let $\mathcal{A} = \mathcal{B} = \mathcal{P}(\omega_1)$, the power set. Let \mathcal{C} be the σ -algebra that consists of the countable subsets of ω_1 and those with countable complements.

The set $L = \{(\alpha, \beta) : \alpha \leq \beta < \omega_1\}$ belongs to $\mathcal{A} \otimes \mathcal{B}$ but not to $\mathcal{C} \otimes \mathcal{B}$. Its horizontal sections of *L* are countable — they are of the form $[0, \beta]$ — and therefore they belong to \mathcal{C} . This means that the characteristic function of *L* is a counterexample.

L belongs to $\mathcal{A} \otimes \mathcal{B}$

To show that *L* belongs to $A \otimes B$ we construct a sequence $\langle A_n \times B_n : n \in \mathbf{N} \rangle$ of rectangles such that $L = \bigcap_m \bigcup_{n \ge m} A_n \times B_n$. This is done quite indirectly.

By recursion we construct a sequence $\langle X_{\alpha} : \alpha < \omega_1 \rangle$ of infinite subsets of **N** with the following property: if $\beta < \alpha$ then $X_{\alpha} \setminus X_{\beta}$ is finite and $X_{\beta} \setminus X_{\alpha}$ is infinite — we abbreviate this as $X_{\alpha} \subset^* X_{\beta}$. For $\alpha < \omega_1$ we write $Y_{\alpha} = \mathbf{N} \setminus X_{\alpha+1}$ and we observe that the two sequences obtained in this way satisfy

$$\alpha \leq \beta$$
 if and only if $X_{\alpha} \cap Y_{\beta}$ is infinite. (*)

From the X_{α} and Y_{α} we define $A_n = \{\alpha : n \in X_{\alpha}\}$ and $B_n = \{\alpha : n \in Y_{\alpha}\}$. The

equivalence (*) is translated in terms of the A_n and B_n reads

 $(\alpha, \beta) \in L$ if and only if $(\alpha, \beta) \in A_n \times B_n$ infinitely often.

But this means $L = \bigcap_m \bigcup_{n \ge m} A_n \times B_n$, as promised.

It remains to construct the X_{α} . Start with $X_0 = \mathbf{N}$. At successor stages let $X_{\alpha+1}$ be the even numbered elements of X_{α} (in its monotone enumeration). If α is a limit ordinal enumerate $\{\beta : \beta < \alpha\}$ in a simple sequence $\{\beta_n : n \in \mathbf{N}\}$ and recursively let x_n be the minimum of $\bigcap_{i < n} X_{\beta_n} \setminus \{x_i : i < n\}$; then let $X_{\alpha} = \{x_n : n \in \mathbf{N}\}$.

L does not belong to $C \otimes B$

Let \mathcal{D} denote the family of those subsets Z of $\omega_1 \times \omega_1$ for which one can find an ordinal α and a subset A of ω_1 such that $Z \cap ([\alpha, \omega_1) \times \omega_1) = [\alpha, \omega_1) \times A$. We show that \mathcal{D} is a σ -algebra that contains all rectangles $C \times B$ with $C \in C$ and $B \in \mathcal{B}$; this implies $C \otimes \mathcal{B} \subseteq \mathcal{D}$. Clearly L does not belong to \mathcal{D} and hence not to $C \otimes \mathcal{B}$.

\mathcal{D} is a σ -algebra Clearly $\omega_1 \times \omega_1$ belongs to \mathcal{D} .

If *Z* belongs to \mathcal{D} then so does its complement Z^c : if $Z \cap ([\alpha, \omega_1) \times \omega_1) = [\alpha, \omega_1) \times A$ then $Z^c \cap ([\alpha, \omega_1) \times \omega_1) = [\alpha, \omega_1) \times A^c$.

Let $\langle Z_n \rangle_n$ be a sequence of elements of \mathcal{D} , with associated ordinals α_n and sets A_n . Let $\alpha = \sup_n \alpha_n$ and $A = \bigcup_n A_n$; then $\bigcup_n Z_n \cap ([\alpha, \omega_1) \times \omega_1) = [\alpha, \omega_1) \times A$, so $\bigcup_n Z_n$ belongs to \mathcal{D} .

Every rectangle $C \times B$, with $C \in C$ and $B \in B$, belongs to \mathcal{D} If C is countable let α be such that $C \subseteq [0, \alpha)$ then $C \times B \cap ([\alpha, \omega_1) \times \omega_1) = [\alpha, \omega_1) \times \emptyset$.

If *C* is co-countable let α be such that $C^c \subseteq [0, \alpha)$ then $C \times B \cap ([\alpha, \omega_1) \times \omega_1) = [\alpha, \omega_1) \times B$.

Remarks

In fact one has $\mathcal{D} = \mathcal{C} \otimes \mathcal{B}$. To see this let $Z \in \mathcal{D}$, with associated ordinal α and set A. Now observe that Z is the union of $[\alpha, \omega_1) \times A$ and $\bigcup_{\beta < \alpha} \{\beta\} \times Z_\beta$, where Z_β denotes $\{\gamma : (\beta, \gamma) \in Z\}$. This expresses Z as a countable union of rectangles from $\mathcal{C} \otimes \mathcal{B}$.

In Kunen's thesis [1] it is shown that, in fact, $\mathcal{A} \otimes \mathcal{B}$ is the whole power set of $\omega_1 \times \omega_1$; the proof that *L* belongs to the algebra is a simplification, for this special case, of Kunen's argument. The algebras \mathcal{C} and \mathcal{A} are quite far apart and rather extreme. I do not know what the answer is for more familiar σ -algebras. Specifically: can one prove that *f* is $\mathcal{C} \otimes \mathcal{B}$ -measurable when both *X* and *Y* both are the real line, \mathcal{A} and \mathcal{B} the σ -algebra of Lebesgue-measurable sets and \mathcal{C} the σ -algebra of Borel sets?

Reference

[1] Kunen, Kenneth, *Inaccessibility properties of cardinals*, Ph.D. thesis, Stanford University, 1968.

29

Solutions