

This Problem Section is open to everyone; everybody is encouraged to send in solutions and propose problems. Group contributions are welcome. We will select the most elegant solutions for publication. For this, solutions should be received before $\mathbf{1 5}$ Juli 2023. The solutions of the problems in this issue will appear in one of the subsequent issues.

Problem A (proposed by Hendrik Lenstra)
Let R be a ring. We say $x \in R$ is central if $x y=y x$ for all $y \in R$. Suppose that for every $x \in R$ the element $x^{2}-x$ is central in R. Show that R is commutative.

Problem B (proposed by Onno Berrevoets)
Isaac really likes apples, but does not like pears. He does not have any fruit now. Each time he visits

- Andrea, he gets 3 apples in exchange for 2 pears;
- Bob, he gets 3 pears;
- Caroline, he gets 1 apple and 1 pear.

Prove that the maximum number of apples Isaac can have after n visits equals $\lfloor 5 n / 9\rfloor$.

Problem C (proposed by Daan van Gent)
For $S \subseteq \mathbb{Z}_{>0}$ write $\langle S\rangle$ for the submonoid of $\mathbb{Z}_{>0}$ generated by S. For $S \subseteq \mathbb{Z}_{>0}$ a foundation for S is a subset $C \subseteq \mathbb{Z}_{>0}$ for which $\langle C\rangle$ is minimal with respect to inclusion such that the elements of C are pairwise coprime and $S \subseteq\langle C\rangle$. For example, a foundation for $\{150,180\}$ is $\{5,6\}$.
a. Show that all subsets of $\mathbb{Z}_{>0}$ have a unique foundation.

Write $w(a, b)$ for the cardinality of the foundation for $\{a, b\}$ and let

$$
f(n)=\min \left\{a b \mid a, b \in \mathbb{Z}_{>0}, w(a, b)=n\right\} .
$$

b. Compute $f(11)$.
c* What is the asymptotic behaviour of f ?

