

Problem A

Does there exist a partitioning X of \mathbb{R} into infinite sets such that for every choice map $c: X \rightarrow \mathbb{R}$, i.e. a map c such that $c(S) \in S$ for all $S \in X$, the image of c is dense in \mathbb{R} ?

Problem B

Show that for all $k \in \mathbb{Z}$ there exists an $x \in \mathbb{Q}$ for which there are at least two subsets $S \subseteq \mathbb{Z}_{\geq 1}$ such that $\sum_{s \in S} s^{k}=x$.

Problem C (proposed by Daan van Gent)
For a group G and $g \in G$ write $c(g)=\left\{h g h^{-1} \mid h \in G\right\}$ and $G^{\circ}=\{g \in G \mid \# c(g)<\infty\}$.
a. Show that G° is a normal subgroup of G and that $G^{\circ 0}=G^{\circ}$.
b. Now define $G_{\circ}=G / G^{\circ}$. Show that there exists a group G for which the sequence G, G_{0}, G_{00}, \ldots does not stabilize, i.e. for none of the groups H in the sequence we have $H^{\circ}=1$.

