Problemen

Problem Section

This Problem Section is open to everyone; everybody is encouraged to send in solutions and propose problems. Group contributions are welcome. We will select the most elegant solutions for publication. For this, solutions should be received before **15 April 2021**. The solutions of the problems in this issue will appear in the next issue.

Problem A (proposed by Daan van Gent and Hendrik Lenstra)

Let *G* and *A* be groups, where *G* is denoted multiplicatively and where *A* is abelian and denoted additively. Assume that *A* is 2-torsion-free, i.e. it contains no element of order 2. Suppose that $q: G \rightarrow A$ is a map satisfying the parallelogram identity: for all $x, y \in G$

we have

$$q(xy) + q(xy^{-1}) = 2q(x) + 2q(y)$$
.

Prove that for all $x, y \in G$ we have $q(xyx^{-1}y^{-1}) = 0$.

Problem B (folklore)

Prove that every Jordan curve (i.e. every non-self-intersecting continuous loop in the plane) contains four points *A*, *B*, *C*, *D* such that *ABCD* forms a rhombus.

Problem C (proposed by Daan van Gent)

A *directed binary graph* is a finite vertex set V together with maps $e_1, e_2 : V \to V$. (The edges are formed by the ordered pairs $(v, e_i(v))$ with $i \in \{1, 2\}$.)

For $a, b, c, d \in \mathbb{Z}_{>0}$, an (a:b)-to-(c:d) distributive graph is a directed binary graph G together with distinct vertices $s, t_1, t_2 \in V$ such that G interpreted as a Markov chain has the following properties:

- 1. For all $v \in V$ the edges $(v, e_1(v))$ have transition probability $\frac{a}{a+b}$ and edges $(v, e_2(v))$ have probability $\frac{b}{a+b}$.
- 2. It has the initial state *s* with probability 1.
- 3. Both t_1 and t_2 connect to themselves, meaning $e_i(t_j) = t_j$ for all $i, j \in \{1, 2\}$.
- 4. It has a unique stationary distribution of t_1 with probability $\frac{c}{c+d}$ and t_2 with probability $\frac{d}{c+d}$.

Show that for all $a, b, c, d \in \mathbb{Z}_{>0}$ there exists an (a : b)-to-(c : d) distributive graph.

Redactie: Onno Berrevoets, Rob Eggermont en Daan van Gent problems@nieuwarchief.nl www.nieuwarchief.nl/problems