Problem Section

Problemen

This Problem Section is open to everyone; everybody is encouraged to send in solutions and propose problems. Group contributions are welcome. We will select the most elegant solutions for publication. For this, solutions should be received before **15 October 2020**. The solutions of the problems in this issue will appear in the next issue.

Problem A (proposed by Onno Berrevoets)

Let $f:(-1,1) \to \mathbb{R}$ be a function of class C^{∞} , i.e., all higher derivatives of f exist on (-1,1). Let $c \ge 0$ be a real number. Suppose that for all $x \in (-1,1)$ and all $n \in \mathbb{Z}_{\ge 0}$ we have $f^{(n)}(x) \ge -c$. Also assume that for all $x \in (-1,0]$ we have f(x) = 0. Prove that f is the zero function.

Problem B (proposed by Onno Berrevoets)

Consider the map $f: \mathbb{Z}_{\geq 0}^2 \to \mathbb{Z}_{\geq 0}^2$, $(a,b) \mapsto (2\min\{a,b\}, \max\{a,b\} - \min\{a,b\})$. We call $(a,b) \in \mathbb{Z}_{\geq 0}^2$ *equipotent* if there exists $n \in \mathbb{Z}_{\geq 0}$ such that $f^n(a,b) = (x,x)$ for some $x \in \mathbb{Z}_{\geq 0}$ (where $f^n = f \circ \cdots \circ f$). Show that $(a,b) \in \mathbb{Z}_{\geq 1}^2$ is equipotent if and only if $\frac{a+b}{\gcd(a,b)}$ is a power of 2.

Problem C* (folklore)

Uncle Donald cuts a 3 kg piece of cheese in an arbitrary, finite number of pieces of arbitrary weights. He distributes them uniformly randomly among his nephews Hewey, Dewey, and Louie. Prove or disprove: the probability that two of the nephews each get strictly more than 1 kg is at most two thirds.