Problemen

Problem Section

This Problem Section is open to everyone; everybody is encouraged to send in solutions and propose problems. Group contributions are welcome. We will select the most elegant solutions for publication. For this, solutions should be received before **15 April 2020**. The solutions of the problems in this issue will appear in the next issue.

Problem A (proposed by Hendrik Lenstra)

For every positive integer *n*, we write $[n] := \{0, 1, ..., n-1\}$. For every integer *m*, we let T(m) := m(m+1)/2 be the *m*-th triangular number. Let $\tau : [n] \to [n]$ be the map given by $m \mapsto T(m) \mod n$.

- a. For which n is τ a permutation?
- b. For these n, determine the sign of T as a function of n.

Problem B (proposed by Onno Berrevoets)

Let *G* be a finite group of order *n*. A map $f: G \to \mathbb{R}$ is called a near-homomorphism if for all $x, y \in G$, we have $|f(xy) - f(x) - f(y)| \le 1$.

- a. Show that for every near-homomorphism f from $G \to \mathbb{R}$, we have $\operatorname{diam}(f[G]) := \sup_{x,y \in G} |f(x) f(y)| \le 2 2/n$.
- b. Show that if G is cyclic, then there exists a near-homomorphism $f: G \to \mathbb{R}$ with $\operatorname{diam}(f[G]) = 2 2/n$.

Problem C (proposed by Hendrik Lenstra)

Let $n \ge 4$ be an integer and let A be an abelian group of order 2^n . Let σ be an automorphism of A such that the order of σ is a power of 2. Then the order of σ is at most 2^{n-2} .