Problem Section

Problemen

This Problem Section is open to everyone; everybody is encouraged to send in solutions and propose problems. Group contributions are welcome. We will select the most elegant solutions for publication. For this, solutions should be received before **15 October 2019**. The solutions of the problems in this issue will appear in the next issue. Problem C, part b is a star exercise; we do not know a solution to this problem.

Problem A (proposed by Hendrik Lenstra)

Let $\tau : \mathbb{Z}_{>0} \to \mathbb{Z}_{>0}$ be the map such that $\tau(n)$ is the number of positive divisors of n for any $n \in \mathbb{Z}_{>0}$. Show that there are uncountably many maps $f : \mathbb{Z}_{>0} \to \mathbb{Z}_{>0}$ such that $f \circ f = \tau$. Note: This is a follow-up to Problem A of the March 2018 edition.

Problem B (proposed by Daan van Gent)

Let *X* be a set and $*: X^2 \to X$ a binary operator satisfying the following properties: **1.** $(\forall x \in X) \ x * x = x;$ **2.** $(\forall x, y, z \in X) \ (x * y) * z = (y * z) * x.$

Show that there exits an injective map $f: X \to 2^X$ that for all $x, y \in X$ satisfies $f(x * y) = f(x) \cap f(y)$.

Problem C (proposed by Onno Berrevoets)

- a. Does there exist an infinite set $X \subset \mathbb{Z}_{>0}$ such that for all pairwise distinct $a, b, c \in X$ and all $n \in \mathbb{Z}_{>0}$ we have $gcd(a^n + b^n, c) = 1$?
- b* Does there exist an infinite set $X \subset \mathbb{Z}_{>0}$ such that for all pairwise distinct $a, b, c, d \in X$ and all $n \in \mathbb{Z}_{>0}$ we have $gcd(a^n + b^n + c^n, d) = 1$?