Problem A

Problem Section

Let n > 2 be an odd integer and let C be an embedding of the circle in \mathbb{R}^n . That is, C = f([0,1]), where $f:[0,1] \to \mathbb{R}^n$ is continuous, f(0) = f(1), and f is injective on [0,1). Show that there is an affine hyperplane in \mathbb{R}^n that contains at least n + 1 points from C.

Problem B

Place coins on the vertices of the lattice \mathbb{Z}^2 , all showing heads. You are allowed to flip coins in sets of three at positions (m,n), (m,n+1) and (m+1,n) where m and n can be chosen arbitrarily. Is it possible to achieve a position where two coins are showing tails and all others show heads using finitely many moves?

Problem C

Say that a natural number is *k*-repetitive if its decimal expansion is a concatenation of *k* equal blocks. For instance, 1010 is 2-repetitive and 666 is 3-repetitive. Let R_k be the set of all *k*-repetitive numbers. Determine its greatest common divisor.

Redacteur: Rob Eggermont problems@nieuwarchief.nl www.nieuwarchief.nl/problems