Problem A

| Problem Section

Let *n* be a natural number and suppose that $A_1, ..., A_n$ are different subsets of $\{1, ..., n\}$. Prove that there is a $k \in \{1, ..., n\}$ such that $A_1 \setminus \{k\}, ..., A_n \setminus \{k\}$ are different.

Problem B (proposed by Hans Zantema)

Let $f,g:\mathbb{N}\to\mathbb{N}$ be strictly increasing functions. Prove that there exists an $n\in\mathbb{N}$ such that $f(g(g(n)))\geq g(f(n))$.

Problem C (proposed by René Pannekoek)

Determine all $n \in \mathbb{N}$ such that $2^n - 1$ divides $3^n - 1$.