Her

roble

Problem A (folklore)

For a finite sequence $s = (s_1, ..., s_n)$ of positive integers, denote by p(s) the number of ways to write s as a sum $s = \sum_{i=1}^{n} a_i e_i + \sum_{j=1}^{n-1} b_j (e_j + e_{j+1})$ with all a_i and b_j non-negative. Here e_i denotes the sequence of which the *i*-th term is 1 and of which all the other terms are 0. Show that there exists an integer B > 1 such that for any product F of (positive) Fibonacci numbers, there exists a finite sequence $s = (s_1, ..., s_n)$ with all $s_i \in \{1, 2, ..., B\}$ such that p(s) = F.

Problem B (folklore)

Let ℓ be a prime number. For any group homomorphism $f: A \to B$ between abelian groups and for any integer $n \ge 0$, denote by f_n the induced homomorphism $A/\ell^n A \to B/\ell^n B$. Let $(k_n)_{n=0}^{\infty}$ and $(c_n)_{n=0}^{\infty}$ be sequences of integers.

Show that there exist integers $N, a, b \ge 0$ and a group homomorphism $f:(\mathbb{Z}/\ell^N \mathbb{Z})^a \to (\mathbb{Z}/\ell^N \mathbb{Z})^b$ such that for all $n \ge 0$ we have $\# \ker f_n = \ell^{k_n}$ and $\# \operatorname{coker} f_n = \ell^{c_n}$ if and only if $k_0 = c_0 = 0$ and the sequences $(k_{n+1} - k_n)_{n=0}^{\infty}$ and $(c_{n+1} - c_n)_{n=0}^{\infty}$ are non-negative, non-increasing, eventually zero, and there is a constant C such that for all n such that $k_{n+1} - k_n$ and $c_{n+1} - c_n$ are not both zero, their difference is C.

(Recall that the *cokernel* coker*f* of a group homomorphism $f: A \rightarrow B$ between abelian groups is the quotient of *B* by the image of *f*.)

Problem C (folklore)

Let *R* be the polynomial ring over \mathbb{Z} with variables x_i , y_i , z_i for all $i \in \mathbb{Z}$. Let *S* be the polynomial ring over \mathbb{Z} with variables t_i for all $i \in \mathbb{Z}$. Let $\tau : R \to R$ be the isomorphism of rings given by $x_i \mapsto x_{i+1}$, $y_i \mapsto y_{i+1}$ and $z_i \mapsto z_{i+1}$.

Consider the morphism $f: R \to S$ of rings given by $x_i \mapsto t_{i-1}t_it_{i+1}$, $y_i \mapsto t_i^3$ and $z_i \mapsto t_i^2$. Does there exist a finite number of elements $r_1, ..., r_n \in R$ such that the kernel I of f is generated as an ideal in R by $\{\tau^i r_j: i \in \mathbb{Z}, j = 1, ..., n\}$?

Redactie:

Gabriele Dalla Torre Christophe Debry Jinbi Jin Marco Streng Wouter Zomervrucht

Problemenrubriek NAW Mathematisch Instituut Universiteit Leiden Postbus 9512 2300 RA Leiden

problems@nieuwarchief.nl www.nieuwarchief.nl/problems