Problem Section

Problemen

Redactie:

Gabriele Dalla Torre Christophe Debry Jinbi Jin Marco Streng Wouter Zomervrucht

Problemenrubriek NAW Mathematisch Instituut Universiteit Leiden Postbus 9512 2300 RA Leiden

problems@nieuwarchief.nl www.nieuwarchief.nl/problems

Problem A (folklore)

Denote for all positive rational numbers x by f(x) the minimum number of 1's needed in a formula for x involving only ones, addition, subtraction, multiplication, division and parentheses. For example, f(1) = 1, and $f(\frac{1}{3}) = 4$, as $\frac{1}{3} = \frac{1}{1+1+1}$ and as no such formula exists with at most three 1's. Note that $f(11) \neq 2$ (concatenation of ones is not allowed). Moreover, denote for all positive rational numbers x by $h_2(x)$ the number $\log_2(p) + \log_2(q)$, where \log_2 denotes the base-2 logarithm, and where p, q are positive integers such that $x = \frac{p}{q}$ and gcd(p,q) = 1.

Show that for all *x*, we have

$$f(x) > \frac{1}{2}h_2(x).$$

Problem B (folklore)

Suppose that there are $N \ge 2$ players, labeled 1, 2, ..., N, and that each of them holds precisely $m \ge 1$ coins of value 1, m coins of (integer) value $n \ge 2$, m coins of value n^2 , et cetera. A *transaction* from player i to player j consists of player i giving a finite number of his coins to player j. We say that an N-tuple $(a_1, a_2, ..., a_N)$ of integers is (m, n)-payable if $\sum_{i=1}^{N} a_i = 0$ and after a finite number of transactions, the i-th player has received (in value) a_i more than he has given away.

Show that for every *N*-tuple $(a_1, a_2, ..., a_N)$ with $\sum_{i=1}^N a_i = 0$ to be (m, n)-payable, it is necessary and sufficient that $m > n - \frac{n}{N} - 1$.

Problem C (proposed by Wouter Zomervrucht)

For each integer $n \ge 1$ let c_n be the largest real number such that for any finite set of vectors $X \subset \mathbb{R}^n$ with $\sum_{v \in X} |v| \ge 1$ there exists a subset $Y \subseteq X$ with $|\sum_{v \in Y} v| \ge c_n$. Prove the recurrence relation

$$c_1 = \frac{1}{2}, \qquad c_{n+1} = \frac{1}{2\pi n c_n}.$$

(

