Problem Section

Problemen

Johan Bosman Gabriele Dalla Torre Christophe Debry Jinbi Jin Marco Streng Wouter Zomervrucht Problemenrubriek NAW Mathematisch Instituut Universiteit Leiden Postbus 9512 2300 RA Leiden problems@nieuwarchief.nl www.nieuwarchief.nl/problems

Redactie:

All three problems ask for a construction with origami in a limited number of moves. More precisely, given a collection of points and lines (or *folds*) in the plane, a *move* (cf. the Huzita–Justin–Hatori axioms) consists of adding to the collection one of the following:

- a fold aligning two distinct points;
- a fold aligning two distinct lines;
- if it exists, a fold having two properties of the following types (except for type 3, one may have two distinct alignments of the same type):
 - 1. the fold aligns a point with a line;
 - 2. the fold passes through a point;
 - 3. the fold is perpendicular to a line;

- a sufficiently general fold having at most one property of types 1, 2 and 3.

For example, given points P_1 and P_2 and lines l_1 and l_2 , examples of moves are adding a fold that aligns P_1 with l_1 and P_2 with l_2 (having two properties of type 1), and adding a fold perpendicular to l_2 aligning P_1 with l_1 (having a property of type 1 and one of type 3). (These two example moves correspond to axioms 6 and 7 from the Huzita–Justin–Hatori axioms.) At any time one is allowed to freely add any intersection point among the lines.

For example, one can construct a square (including its sides) in five moves as follows. First, make any fold *l*. Then make any two distinct folds l_A and l_B perpendicular to *l*. Let *A* and *B* be the intersections of *l* with l_A and l_B , respectively. Next, make a fold *d* aligning *l* and l_A , and denote its intersection with l_B by *C*. Finally, make the fold *m* perpendicular to l_A passing through *C*, and denote its intersection with l_A by *D*. Then *ABCD* (together with the lines *l*, l_A , l_b , *m*) is a square.

Problem A

Given three points *A*, *B*, and *C*, and a line *l* passing through *C*, construct in at most six moves a point *D* on the line *l* such that |CD| = |AB|.

Problem B

Construct a golden rectangle (including its sides) in at most eight moves.

Problem C

Given two points *A* and *B*, construct in at most four moves the point *C* on the segment *AB* such that $|AC| = \frac{1}{3}|AB|$.

22