Problem Section

Redactie: Johan Bosman Gabriele Dalla Torre Christophe Debry Jinbi Jin Marco Streng Wouter Zomervrucht Problemenrubriek NAW Mathematisch Instituut Universiteit Leiden Postbus 9512 2300 RA Leiden problems@nieuwarchief.nl www.nieuwarchief.nl/problems

93

Problem A (folklore, communicated by Jaap Top) Does there exist an integer n > 1 such that the *set* of leading digits of $2^n, 3^n, \ldots, 9^n$ is equal to $\{2, 3, \ldots, 9\}$?

Problem B (proposed by Bart de Smit and Hendrik Lenstra)

Rings are unital, and morphisms of rings send 1 to 1.

Let *A* and *B* be commutative rings. Suppose that there exists a ring *C* such that there are injective morphisms $A \rightarrow C$ and $B \rightarrow C$ of rings. Show that there exists a *commutative* such ring.

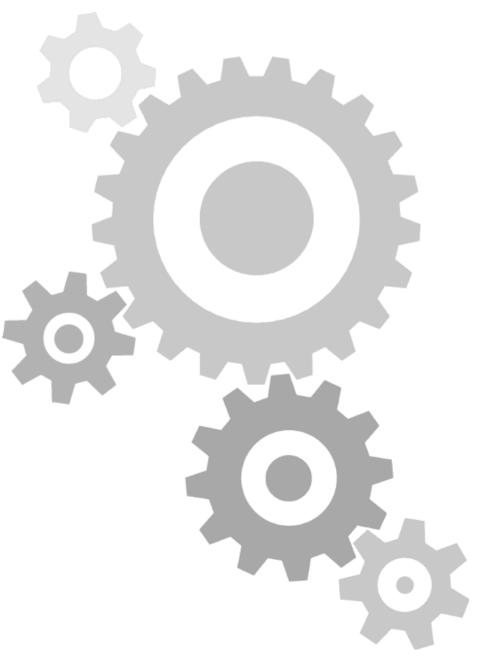
Problem C (proposed by Jinbi Jin)

Let $C(\mathbb{R}, \mathbb{R})$ denote the set of continuous maps from \mathbb{R} to itself. A (not necessarily continuous) map $f: C(\mathbb{R}, \mathbb{R}) \to C(\mathbb{R}, \mathbb{R})$ is called *good* if it satisfies, for all $s, t \in C(\mathbb{R}, \mathbb{R})$, the identity

 $f(s \circ t) = f(s)f(t),$

where the product on the right hand side is the point-wise multiplication of maps.

- − Find a non-constant good map $f: C(\mathbb{R}, \mathbb{R}) \rightarrow C(\mathbb{R}, \mathbb{R})$.
- − Show that $f(\exp) = 0$ for all non-constant good maps $f: C(\mathbb{R}, \mathbb{R}) \to C(\mathbb{R}, \mathbb{R})$. (Here, exp is given by $x \mapsto e^x$.)



29