Problem Section

Johan Bosman Gabriele Dalla Torre Jinbi Jin Ronald van Luijk Lenny Taelman Wouter Zomervrucht Problemenrubriek NAW Mathematisch Instituut Universiteit Leiden Postbus 9512 2300 RA Leiden problems@nieuwarchief.nl www.nieuwarchief.nl/problems

Redactie:

94

Problem A (proposed by Jan Turk)

Let $\phi(n)$ denote the Euler totient function. Find the set of limit points of the sequence $(\phi(n)/n)_{n=1}^{\infty}$.

Problem B

Find nonzero integers c_0, c_1, c_2, c_3 such that the sequence given by $a_1 = 1$, $a_2 = 12$, $a_3 = 68$, $a_4 = 504$, and

 $a_{n+4} = c_0a_n + c_1a_{n+1} + c_2a_{n+2} + c_3a_{n+3}$ (n > 0)

consists of positive terms and has the property that a_m divides a_n whenever m divides n.

Problem C (proposed by Johannas Winterink)

A circle in \mathbb{R}_2 is called *Apollonian* if its centre coordinates and radius are all integers. Do there exist eleven distinct Apollonian circles *A*, *B*, *C*, *T*₁,..., *T*₈ such that for i = 1, ..., 8, the circle *T_i* is tangent to *A*, *B*, and *C*?

