7

Problem Section

Problem A (proposed by Ovidiu Furdui)

Denote the fractional part of a positive real number *x* by $\{x\}$, for example $\{\pi\} = \pi - 3$. Evaluate the following double integral:

$$\int_0^1 \int_0^1 \left\{ \frac{x}{y} \right\} \left\{ \frac{y}{x} \right\} dx dy.$$

Problem B (Folklore)

- Let *S* be a set consisting of 15 integers, and such that for all $s \in S$ there exist $a, b \in S$ with s = a + b.
- 1. Show that there exists a non-empty subset $T \subset S$ of at most seven elements that add up to 0.

2. Show that this does not need to be true for *S* with 16 elements.

Problem C (Proposed by the Arithmetic Geometry group of Leiden University) Let $f : \mathbf{R} \to \mathbf{R}$ be a C^{∞} function (that is, all higher derivatives of f exist and are continuous) such that

1. f(x) = 0 if $x \le 0$, 2. f(x) > 0 if x > 0.

Is it true that \sqrt{f} : **R** \rightarrow **R**_{≥ 0} is a *C*¹ function (that is, that its derivative exists and is continuous)?

Eindredactie: Lenny Taelman, Johan Bosman Redactieadres: Problemenrubriek NAW Mathematisch Instituut Postbus 9512 2300 RA Leiden uwc@nieuwarchief.nl