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that game theory can be viewed as the study of fixed points. In 
my view, this is a source of strength: Game-theoretic results de-
veloped in one context regularly can be used to prove results in 
completely different contexts, sometimes outside of game the-
ory proper.

Much of my own research centers around players’ beliefs: 
What they think others may do. Also there fixed points show 
up in sometimes unexpected ways. One example is an ongoing 
project that studies when players’ beliefs have a ‘simple’ repre-
sentation. To illustrate, suppose there are two players, Ann and 
Bob. We say that Ann is rational if she chooses a strategy that 
maximizes her (expected) reward given her belief (a probabil-
ity measure over Bob’s strategies); likewise for Bob. Where do 
players’ beliefs come from? Nash assumed that players’ beliefs 
are correct: Ann puts probability 1 on Bob’s actual strategy, and 
analogously for Bob. But in many cases this assumption is too 
strong. A weaker assumption is that players are rational, believe 
that the other is rational (i.e., assign probability 1 to the other 
player being rational), believe that the other believes that the 
other is rational, and so on. This assumption, commonly termed 
rationality and common belief of rationality (RCBR), requires 
considering an entire hierarchy of beliefs: probability measures 
on sets of probability measures on sets of probability measures, 
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Game theory — or, interactive decision theory — analyzes the 
optimal behavior of decision-makers (players) whose decisions 
affect each other. Fittingly, the field’s origins lie in the study of 
parlor games (e.g., chess, poker, bridge), with important papers 
by Ernst Zermelo (on chess) and Émile Borel (inspired by card 
games). Mathematically, the important feature of parlor games 
is that they are strictly competitive (i.e., zero sum): One player’s 
gain is the other player’s loss. A cornerstone of modern game 
theory is the minimax theorem proved by John von Neumann in 
1928: for every two-player zero-sum game (that satisfies some 
conditions), there is a decision rule (strategy) for each player 
that minimizes the player’s worst-case loss. Despite the continu-
ing importance of this result, it does have significant limitations: 
Many games of interest have more than two players or have some 
element of cooperation. It took 22 years before mathematicians 
were able to analyze general games. The key insight is that the 
strategies in von Neumann’s minimax solution do not only limit 
a player’s worst-case loss, they are also mutually optimal. That 
is, a pair of minimax strategies is a fixed point of the correspon-
dence that maps any strategy si  for player i to strategies for 
player j i!  that maximize j’s (expected) reward if i chooses si . 
This idea is entirely general, and in 1950, John Nash showed 
that every sufficiently well-behaved game has such a fixed point 
(equilibrium). 

In the decades since Nash’s work, game theory has expanded 
its scope tremendously, making connections to areas as diverse 
as probability theory and statistics [1], stochastic processes [16], 
dynamical systems [8], tropical geometry [3], algebraic topolo-
gy [6], differential topology [9], general topology [14], axiomatic 
set theory [5], model theory [4], category theory [12], epistemic 
logic [2], computational complexity theory [13], order theory [15] 
and partial differential equations [10], to name but a few. Never-
theless, fixed points continue to play a central role throughout 
game theory. Indeed, somewhat tongue-in-cheek, one could say 
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cohort has started this fall. I am very excited about the program. 
Mathematics has long played a central role in addressing ques-
tions of central economic relevance, and today’s and tomorrow’s 
economic problems, such as increasing inequality, will likewise 
require the attention of well-trained mathematicians with a thor-
ough understanding of economics. To give an example, a central 
question in the 1950s was whether communism-style central 
planning systems could ever outperform capitalist market-based 
systems. Of course, over time evidence emerged that existing 
central planning systems were failing. But, without formal mod-
els, the question remained whether greater economic success 
could not be achieved by some new kind of central planning sys-
tem. This question was settled by mathematical economists who 
characterized exactly when capitalist price systems are superior. 
And, as a testament to the power of abstract reasoning, essen-
tially the same ideas used to settle this question can be used 
to analyze completely different phenomena, a recent example 
being Google’s ad auctions!

To equip students’ with the necessary tools, the new double 
BSc program goes well beyond BSc programs in econometrics: 
Because students complete both degrees, they have the oppor-
tunity to delve into topics that traditionally receive less attention 
within an econometrics program. To give an example, economic 
inequality tends to go hand-in-hand with limited social mobility. 
There are several explanations for this, and therefore different 
policy interventions that could be effective if one would like to 
reduce inequality or increase mobility. Disentangling those re-
quires both mathematical modeling (dynamical systems, sto-
chastic processes, game theory) and a good understanding of 
the underlying economic drivers and institutions. And it’s not 
just economics that can benefit from a closer relation with math-
ematics: the reverse is also true. While there is less of a tradition 
of a two-way interaction between the two fields than with phys-
ics and mathematics, there are many examples where advances 
in mathematics had as their origin a purely economic motiva-
tion. It is to this two-way interaction that I hope to contribute at 
Utrecht, in game theory and beyond. ←

and so on. Belief hierarchies are mathematically well-defined 
but can be difficult to work with in practice. To address this, John 
Harsanyi showed that belief hierarchies have a simple recursive 
description: Belief hierarchies can be modeled by endowing 
each player i with a set of ‘types’ Ti , where each type t Ta a!  for 
Ann is associated with a probability measure over Bob’s strat-
egies and Bob’s types; again, analogously for Bob [7]. Then, 
each type ta  for Ann unwinds into an infinite hierarchy of be-
liefs that specifies her beliefs about Bob’s strategy, about his 
beliefs about her strategy, and so on. While elegant, Harsanyi’s 
approach opens up a new question: Does there exist a situation 
for which there is no set of types large enough to model all belief 
hierarchies that we are interested in? It turns out that, for the 
case sketched above, no such situation exists: types can gen-
erate all belief hierarchies (under some topological or mea-
sure-theoretic conditions); moreover, they can generate all pre-
dictions consistent with RCBR [11]. But, for some types of games, 
using probability measures to model beliefs is not appropriate. 
For example, in ‘dynamic games’ that unfold over time, we have 
to specify how players update their beliefs when they receive 
new information. While type spaces and belief hierarchies can 
easily be defined for these more general settings, it is unclear 
that the results described above still go through: A key step in 
the proof of these results is that the strategies that can be played 
under RCBR are the fixed point of a monotone function (i.e., an 
order-preserving function). Yet, monotonicity often fails for more 
general notions of beliefs. My earlier work has shown that this 
need not be problematic: At least in some nonmonotone cases, 
Harsanyi’s approach is sufficiently expressive. My present work 
aims to characterize when this holds in general. This would also 
help unify existing results for the case where beliefs can be rep-
resented by probability measures.

I was recruited to Utrecht to help set up a new double BSc 
program in mathematics and economics (together with my col-
league Kees Oosterlee). Under this program, students earn two 
BSc degrees in three years: one in mathematics, and one in eco-
nomics. The first students started in September 2022, and a new 
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