

Redactie: Onno Berrevoets en Daan van Gent problems@nieuwarchief.nl
www.nieuwarchief.nl/problems

This Problem Section is open to everyone; everybody is encouraged to send in solutions and propose problems. Group contributions are welcome. We will select the most elegant solutions for publication. For this, solutions should be received before 15 Juli 2023. The solutions of the problems in this issue will appear in one of the subsequent issues.

Problem A (proposed by Hendrik Lenstra)
Let R be a ring. We say $x \in R$ is central if $x y=y x$ for all $y \in R$. Suppose that for every $x \in R$ the element $x^{2}-x$ is central in R. Show that R is commutative.

Problem B (proposed by Onno Berrevoets)
Isaac really likes apples, but does not like pears. He does not have any fruit now. Each time he visits

- Andrea, he gets 3 apples in exchange for 2 pears;
- Bob, he gets 3 pears;
- Caroline, he gets 1 apple and 1 pear.

Prove that the maximum number of apples Isaac can have after n visits equals $[5 n / 9]$.

Problem C (proposed by Daan van Gent)

For $S \subseteq \mathbb{Z}_{>0}$ write $\langle S\rangle$ for the submonoid of $\mathbb{Z}_{>0}$ generated by S. For $S \subseteq \mathbb{Z}_{>0}$ a foundation for S is a subset $C \subseteq \mathbb{Z}_{>0}$ for which $\langle C\rangle$ is minimal with respect to inclusion such that the elements of C are pairwise coprime and $S \subseteq\langle C\rangle$. For example, a foundation for $\{150,180\}$ is $\{5,6\}$.
a. Show that all subsets of $\mathbb{Z}_{>0}$ have a unique foundation.

Write $w(a, b)$ for the cardinality of the foundation for $\{a, b\}$ and let

$$
f(n)=\min \left\{a b \mid a, b \in \mathbb{Z}_{>0}, w(a, b)=n\right\}
$$

b. Compute $f(11)$.
c* What is the asymptotic behaviour of f ?

Edition 2023-1 We received solutions from Michel Bel, Carsten Dietzel and Albert Visser.

Problem 2023-1/A

Does there exist a partitioning X of \mathbb{R} into infinite sets such that for every choice map $c: X \rightarrow \mathbb{R}$, i.e. a map c such that $c(S) \in S$ for all $S \in X$, the image of c is dense in \mathbb{R} ?

Solution We received correct solutions from Michel Bel, Carsten Dietzel and Albert Visser. We show here the solution from Albert Visser: Let's say that the triple (m, n, p) is adequate if m is an odd integer, n is a natural number, and p is an odd prime. We define

$$
A_{m, n, p}=\left\{\left.\frac{m}{2^{n}}+\frac{1}{p^{k}} \right\rvert\, k \in \mathbb{Z}_{\geq 0}\right\} \quad \text { where }(m, n, p) \text { is adequate }
$$

and write A_{∞} for the complement in \mathbb{R} of the union of all such $A_{m, n, p}$. Consider $\mathcal{X}=\left\{A_{m, n, p} \mid(m, n, p)\right.$ is adequate $\} \cup\left\{A_{\infty}\right\}$. Clearly, all elements of \mathcal{X} are infinite and the union of \mathcal{X} is \mathbb{R}. We show that the elements of \mathcal{X} are pairwise disjoint. By definition, A_{∞} is disjoint from the $A_{m, n, p}$. We note that for adequate (m, n, p) and $k \in \mathbb{Z}_{\geq 0}$ the fraction

$$
\frac{m}{2^{n}}+\frac{1}{p^{k}}=\frac{m p^{k}+2^{n}}{2^{n} p^{k}}
$$

cannot be further simplified. This means that, if

$$
\frac{2^{n_{1}}+m_{1} p_{1}^{k_{1}}}{2^{n_{1}} p_{1}^{k_{1}}}=\frac{2^{n_{2}}+m_{2} p_{2}^{k_{2}}}{2^{n_{2}} p_{2}^{k_{2}}}
$$

for adequate $\left(m_{i}, n_{i}, p_{i}\right)$, we deduce from the denominators that $n_{1}=n_{2}, p_{1}=p_{2}$ and $k_{1}=k_{2}$, and finally $m_{1}=m_{2}$. Hence the $A_{m, n, p}$ are pairwise disjoint.

Finally, consider any real r and any $\delta>0$. We can find $m \in \mathbb{Z}$ and $n \in \mathbb{Z} \geq 0$ such that $\left|r-m 2^{-n}\right|<\delta / 2$ by considering the binary expansion of r, and an odd prime p with $1 / p<\delta / 2$. It follows that for all $q \in A_{m, n, p}$ we have $|r-q|<\delta$. In particular, this holds for $q=c\left(A_{m, n, p}\right)$, so the image of c is dense.

Problem 2023-1/B

Show that for all $k \in \mathbb{Z}$ there exists an $x \in \mathbb{Q}$ for which there are at least two subsets $S \subseteq \mathbb{Z}_{\geq 1}$ such that $\sum_{s \in S} s^{k}=x$.

Solution We received a correct solution from Carsten Dietzel: First assume that $k \geq 0$. Let n be an integer with $2^{n}>n^{k+1}+1$. Denote by P_{n} the power set of $\{1, \ldots, n\}$ and by \mathbb{N} the set of positive integers. Define the map

$$
\begin{aligned}
& \sigma: P_{n} \rightarrow \mathbb{N}, \\
& S \mapsto \sum_{s \in S} s^{k} .
\end{aligned}
$$

For $S \in P_{n}$ we have $\sigma(S) \leq n \cdot n^{k}=n^{k+1}$. Therefore, the range of σ is a subset of $\left\{0, \ldots, n^{k+1}\right\}$. By the pigeonhole principle, σ is not injective, i.e., there are distinct $S_{1}, S_{2} \in P_{n}$ with $\sigma\left(S_{1}\right)=\sigma\left(S_{2}\right)$.

Now let $k<0$. From the case $k \geq 0$ we know that there are finite subsets $T_{1}, T_{2} \subset \mathbb{N}$ such that $\sum_{t \in T_{1}} t^{-k}=\sum_{t \in T_{2}} t^{-k}$. Let N be the least common multiple of the elements of $T_{1} \cap T_{2}$. Define $S_{i}=\left\{N / t \mid t \in T_{i}\right\}$ for $i=1,2$. Then for $i=1,2$ we have

$$
\sum_{s \in S_{i}} s^{k}=\sum_{t \in T_{i}}(t / N)^{-k}=N^{k} \sum_{t \in T_{i}} t^{-k}
$$

and thus $\sum_{s \in S_{1}} s^{k}=\sum_{s \in S_{2}} s^{k}$. Hence, S_{1} and S_{2} are as desired!

Problem 2023-1/C (proposed by Daan van Gent)
For a group G and $g \in G$ write $c(g)=\left\{h g h^{-1} \mid h \in G\right\}$ and $G^{\circ}=\{g \in G \mid \# c(g)<\infty\}$.
a. Show that G° is a normal subgroup of G and that $G^{\circ \circ}=G^{\circ}$.
b. Now define $G_{\circ}=G / G^{\circ}$. Show that there exists a group G for which the sequence G, G_{0}, G_{00}, \ldots does not stabilize, i.e. for none of the groups H in the sequence we have $H^{\circ}=1$.

Solution We received a correct solution from Carsten Dietzel. The solution shown here is by Daan van Gent.
a. For all $g, h \in G$ we have $c\left(g^{-1}\right)=\left\{a^{-1} \mid a \in c(g)\right\}$ and $c(g h) \subseteq\{a b \mid a \in c(g), b \in c(h)\}$. Thus for $g, h \in G^{\circ}$ both $c\left(g^{-1}\right)$ and $c(g h)$ are finite and $c(1)=\{1\}$, so G° is a subgroup of G. Then note that $c(g)=c(h)$ for conjugates g and h, so G° is normal.

Clearly $G^{\circ \circ} \subseteq G^{\circ}$. Suppose $g \in G^{\circ}$. Since g has only finitely many conjugates in G, it certainly has only finitely many conjugates in a subgroup, so $g \in G^{\circ 0}$.
b. For a family of groups $\left(G_{i}\right)_{i \in I}$ we define the restricted product

$$
\bigoplus_{i \in I} G_{i}=\left\{\left(x_{i}\right)_{i \in I} \in \prod_{i \in I} G_{i} \mid x_{i}=1 \text { for all but finitely } i\right\} .
$$

©

$\boldsymbol{\infty}$

We inductively define $P_{0}=\{1\}$ and for $k \geq 0$ define

$$
F_{k}=\bigoplus_{\substack{H \triangleleft P_{k} \\ \\ \#\left(P_{k} / H\right)<\infty}}^{\mathbb{Z}_{2}^{P_{k} / H} \text { and } P_{k+1}=F_{k} \rtimes P_{k}}
$$

where \mathbb{Z}_{2} is the group of 2-adic integers and $\pi \in P_{k}$ acts on each factor $\mathbb{Z}_{2}^{P_{k} / H}$ as $\left(\varphi_{H, x}\right)_{x \in P_{k} / H} \mapsto\left(\varphi_{H, \pi x}\right)_{x \in P_{k} / H}$.

Note that every $x \in F_{k}$ has a finite orbit under P_{k}, because all P_{k} / H are finite and each $x \in F_{k}$ has finite support. Hence $F_{k} \subseteq P_{k+1}^{\circ}$. Conversely, suppose $(\varphi, \pi) \in P_{k+1}^{\circ}$, For $(\psi, 1) \in P_{k+1}$ we have $(\psi, 1)(\varphi, \pi)(\psi, 1)^{-1}=\left(\left(\psi_{H, x}+\varphi_{H, x}-\psi_{H, \pi x}\right)_{H, x}, \pi\right)$. If $\pi x \neq x$ for some (H, x), then with $\psi_{H, x}=0$ and $\psi_{H, \pi x}$ ranging over \mathbb{Z}_{2} we obtain infinitely many conjugates of (φ, π). Hence $\pi x=x$, and π acts trivially on every finite quotient of P_{k}. One shows inductively that P_{k} is profinite, hence $\pi=1$. Thus $P_{k+1}^{\circ}=F_{k}$ and $\left(P_{k+1}\right)_{\circ}=P_{k}$.

Finally, let $G=\bigoplus_{k=0}^{\infty} P_{k}$. Observe that $G^{\circ}=\bigoplus_{k=0}^{\infty}\left(P_{k}^{\circ}\right)=\bigoplus_{k=1}^{\infty} F_{k-1} \neq 1$, while $G_{\circ} \cong G$. Hence the sequence never stabilizes.

