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Statistical Inverse Problems for Population Processes 
Birgit Sollie

In June 2021 Birgit Sollie from the Vrije Universiteit Amsterdam suc-
cessfully defended her PhD thesis. Her thesis has title Statistical 
Inverse Problems for Population Processes and she carried out her 
research under the supervision of Prof. dr. Mathisca de Gunst (VU) 
and Prof. dr. Michel Mandjes (UvA).

During her PhD Birgit worked on population processes. In par-
ticular, she studied population processes where the parameters 
depend on a background process. She also developed a model, 
relying on quasi birth-death processes, to model RNA transcription. 

A population evolving
Population processes describe how a population evolves over time 
by modelling their growth as a function of random events. Popula-
tion processes can be used to study various kinds of populations, 
of people or animals, but also of molecules in a cell, or even the 
number of visits to a website. An example is a population where 
individuals die at rate n and new individuals are born at rate m. 
In this model, if 2n m then the population will eventually die 
out since individuals die at a higher rate than new individuals are 
born. 

Birgit studied population processes where the parameters de-
pend on some unobserved background process. In general, pop-
ulations evolve in an environment, think for example of micro-
organisms living in the human body. Complete knowledge of the 
environment in which a population grows is in most cases unavail-
able, and measurements come mainly from the population. This is 
why in many models the environment is modelled as a background 
process which affects the population and is in principle considered 
to be unobservable. 

In practical applications, where the environment affects the 
birth and death rates, the two-parameter model above may be 
inadequate. Think for example of a population of animals whose 
welfare depends on food availability. By adding a background pro-
cess to the model this dependence can be taken into account. 
The background process could be considered to have two states, 
one for the case of high food availability and one for low. When 
the background process is in state ‘low’ then the birth parameter 
m takes some value 1m  and the death parameter some value 1n . 
When in state ‘high’ then these parameters are equal to 2m  and 2n , 
respectively. This background process alternates between the two 
states at random moments in time. The time between two switches 
is considered to follow an exponential distribution. For the inter-
ested readers, the background process is thus a two-state Markov 
process. In Figure 1 below we present a realization of such a pop-
ulation process.
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You can think of many more examples of external conditions, 
like temperature affecting the spread of bacteria or weather condi-
tions affecting the mobility of individuals. 

A Markovian world
Birgit worked with a class of models called Markov-modulated 
Independent Sojourn Processes (MMIS). These models resemble 
the model described above but are more general. In an MMIS 
the population process has two parameters, a birth parameter m, 
which determines the rate of births of new individuals, and a life-
time parameter n, which determines how long individuals live. 
Moreover, new individuals are born according to a Poisson Process 
with parameter m and have a lifetime that follows an exponential 
distribution with parameter n.

In an MMIS there is also a background process, which is called 
the modulating process. In Birgit’s work the modulating process is 
considered to be a continuous time Markov-process, denoted by 
( )X t t 0$" , , which takes values in a finite state space , ,d1 f" ,. This 

process determines the value of the birth rate m. As long as X is 
in state i, then new individuals are born according to a Poisson 
Process with parameter im . In Birgit’s research the lifetime parame-
ter n is taken to be constant, thus not varying as the background 
process changes. 

The question that is central in Birgit’s research is the follow-
ing: if we have observations of the population process ( )M t t 0$" , , 
where ( )M t  denotes the number of individuals in the population at 
time t, is it possible to make accurate estimates of the parameters 

im , n, and the parameters (transition rates and stationary probabil-
ities) of the background process? 

Birgit developed an algorithm, based on the Expectation-Maxi-
mization algorithm (EM), to determine such estimates. Let’s have 
a look at the basic ideas behind the algorithm. All the parameters 
that need to be estimated, i.e. the rates im  and n, the transition 
rates and the stationary probabilities of the background Markov 
process, are collected in one vector-parameter i. Furthermore, only 
finitely many observations of the population process are available, 
denoted by ( ( ), ( ), , ( ))m M t M t M tn n1 2 f= . Two more quantities are 
also considered, namely ( , )X A , which describe the behavior of the 
background process and of all the births that occurred in the time 
intervals [ , ], , ,t t i n1 1i i 1 f= -+ . These are both random variables 

since they describe the unobserved behavior in between each pair 
of observations of the population process. The key in Birgit’s anal-
ysis is to extract as much information as possible for ( , )X A  from 
the finitely many observations in mn. 

The EM algorithm works iteratively. Each iteration consists 
mainly of two steps, first considering an expectation and after-
wards solving a maximization problem. The algorithm will work 
with a likelihood function which describes the joint probabilities 
of the observations mn and the random variables ( , )X A , namely,

( | , , ) ( , , ) ( | , ) ( , ) .m A X P M m A X P M m A X P A XL n n ni = = = =i i i

This likelihood function is a function of the parameter i, and it 
is also a random variable since ( , )X A  are random. As a reminder, 
the vector-parameter i contains all the parameters of the model 
that need to be estimated from the observations. The addition of 
the random vector in the likelihood function is necessary. A typical 
likelihood function with respect only to mn is not easy to work with 
in this model due to the unobserved data.

Each iteration of the algorithm will yield a better estimate for 
the parameter i. In each iteration we start with an estimate 'i  for i, 
which is obtained from the previous iteration of the algorithm. 
Then an expectation of the log-likelihood function is estimated 
over the random variables ( , )X A , but with respect to the new esti-
mate 'i . This expectation is given below,

( ( | , , )) .log m A XE L' nii (1)

This is a deterministic function of i. In the maximization step the 
algorithm updates the estimate 'i  to iu, which will be used in the 
next iteration. The new estimate iu is determined as the solution to 
a maximization problem, namely,

( ( ( | , , ))) .argmax log m A XE L' ni i= i i
u (2)

The idea is thus to find the value of the parameter that maximizes 
the expected likelihood to obtain the observed data mn under the 
assumption that the population evolves as an MMIS. For the exact 
technical steps in order to compute the expectation in (1) and the 
parameter iu in (2) we refer the interested reader to Birgit’s thesis. 

Populations come in contact
In the previous section we discussed the case of a single popula-
tion which does not interact with other populations. In practice, 
populations interact with each other, as in the case of migration. 
Think for example of bacteria which can migrate from one cell 
to other cells. Birgit also studied a network-based model, where 
each node corresponds to a population process. Individuals from 
each node can migrate to other populations depending on the 
underlying structure of the network, namely, individuals can move 
between two populations if there is an edge connecting the cor-
responding nodes. The network-based model that Birgit studied 
is a discrete-time model, and not a continuous-time model as the 
single population model discussed above. In such a model a vec-
tor ( ) ( ( ), , ( ))k M k M kM n1 f=  describes the population process at 
time k, and j( )M k  describes the population process at time k and 
node j. 

As before, in this network-based model there is a background 
process affecting the parameters of the population processes. The 
question is again to estimate the birth-lifetime parameters, and the 
transition rates and stationary probabilities of the background pro-

Figure 1 Upper panel: number of individuals in the population. Lower panel: state of 
the background process. Depending on the state of the background process the population 
process grows differently.
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This process can be repeated to produce more RNA molecules. 
The RNA transcription can be controlled by a process called gene 
repression. The promoter can bind to repressors for a period of 
time in which RNA polymerase cannot reach the start site to initi-
ate transcription. This causes the promoter to switch between an 
active state, free from repressors, and an inactive state, bound 
by repressors (which is the background on / off mechanism in the 
mathematical model). Using a class of models called quasi-random 
birth-death processes, which are similar to, but more general mod-
els than the MMIS described above, Birgit developed and analyzed 
a model for the dynamics of a population of RNA molecules in 
single living cells.

The more personal aspect
Before we conclude this article we would like to give the word 
to Birgit.

Birgit, would you like to share some memories with us? 
“I have many nice memories from my PhD years. I enjoyed all 
the collaborations, and meeting so many nice people. I was lucky 
to be part of the NETWORKS program, where I have met a lot of 
fellow-researchers. I have nice memories of the various NETWORKS 
events, where I learned about interesting topics, but were also 
full of fun. We went for nice walks and played many boardgames 
together. I remember one training week in a conference center with 
bowling lanes. We played every night, which even caused me a 
sore wrist for a few months.”

Were you also involved in some other activities you would like to 
share with the readers?
“I have been a board member of European Women in Mathematics – 
The Netherlands (EWM-NL). It was my first experience as a board 
member and I learned a lot from it. I co-organized for example a 
workshop on Work-Life balance, and I was coordinating the EWM-NL 
mentor network. Through this network, female mathematicians can 
sign up to be matched with a mentor for advice on things related 
to their career.”

Concluding
Birgit’s research focused on population processes where the pa-
rameters depend on a background process. She developed meth-
ods, relying on the Expectation-Maximization algorithm and the 
saddlepoint method, in order to estimate the parameters of both 
the population and the background process. Finally, Birgit devel-
oped and analyzed a model for RNA transcription using quasi birth-
death processes. 

Since April Birgit is working as a postdoctoral researcher at the 
Department of Epidemiology and Data Science of the Amsterdam 
UMC. Her current research focuses on HPV (human papillomavirus), 
which is a sexually transmitted virus that causes various diseases, 
most prominently cervical cancer. Birgit works on HPV transmission 
models and cost-effectiveness assessments of HPV vaccination 
strategies. We wish Birgit all the best with her further research. s

cess, solely from observations of the population process. Unfor-
tunately, the EM algorithm described above can’t be implemented 
because some additional complications arise due to the network 
structure. The major implication concerns estimating the transition 
probabilities of the vector-population process, defined as 

( | ) ( ( ) | ( ) , ), , , , , , ,t P k k X i i d km m M m M m' '1 1 1 2i f f= + = = = = =

(3)
where X denotes the background process which can be in one of 
the states , ,d1 f" ,. To compute these probabilities for an arbitrary 
network all possible transitions between populations need to be 
taken into account. In single population processes this difficulty is 
absent, and in small-scale networks an exact analysis is possible. 
But as the size of the network grows, new techniques are needed 
In order to deal with the increasing complexity. 

Birgit relied on the saddlepoint method to develop an accurate 
approximation for the probabilities ( | ), , ,'m mt i d1i f= . Shortly 
stated, the saddlepoint method approximates a random variable’s 
probability mass function through its moment generating function. 
When analyzing Markovian populations interacting on a network 
it is usually possible to determine such moment generating func-
tions, which makes the saddlepoint method suitable to approxi-
mate the desired transition probabilities in (3).

Using a suitably defined likelihood function, and the approxi-
mation obtained from the saddlepoint method, estimates for the 
desired parameters can be obtained. The likelihood function used 
in the network-based model is the typical likelihood function with 
respect to the observations of the vector-population process. This 
is a major difference when compared to the likelihood function 
considered in the single population in continuous time, defined 
in (1). When using the EM algorithm, a likelihood function is used 
that is based on both observed and unobserved data. And the 
likelihood function is maximized iteratively. In the network-based 
model it is not possible to use the EM algorithm due to the com-
plexity of the model. Hence the likelihood function is based only 
on the observed data, and maximized numerically to obtain the 
parameter estimates. 

RNA transcription
An application that Birgit worked on concerns modelling the pop-
ulation of RNA molecules in single cells. The synthesis (or birth) 
of a single RNA molecule, which is called transcription, is a sto-
chastic process regulated by an on / off mechanism and follows a 
sequential process consisting of multiple steps. These steps are 
the following:

 – The molecule RNA polymerase binds to the DNA and slides 
along the DNA to find a transcription start site, called promoter. 

 – Once it has found a start site it binds firmly and the transcrip-
tion begins. 

 – The RNA polymerase moves along the gene while copying the 
genetical code step by step.

 – Once it reaches the stop site, it releases itself and the new RNA 
transcript from the DNA. 


