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Percolation phase transition
Consider a finite network Gn on n verti-
ces, where each edge e is associated 
with an independent Uniform[ , ]0 1  edge-
weight Ue. The percolation process refers 
to the graph-valued stochastic process 
( ( ))G p [ , ]n p 0 1! , where, at time p, we only 
keep edges satisfying U pe # . The phase 
transition can be informally understood as 
follows: As p increases, and more edges 
keep getting added to the graph, there is 
a point when adding a just small fraction 
of edges (i.e., increasing p only slightly) 
suddenly makes a macroscopic connected 
component emerge. To define the phase 
transition more formally, let ( )pC( )k  denote 
the k-th largest connected component of 
( )G pn . We say that phase transition} occurs 

around the critical value ( )p p nc c= , if for 
any , 0>f d , 
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The critical regime lies on the boundary 
between the subcritical and supercritical 
phases, where the system exhibits an in-
termediate behavior. To observe the critical 
behavior, one must take ( )p p 1c n" f=  in 
(1), for some 0n "f  as n " 3. Interesting-
ly, the critical behavior is not observed for 
any nf ; there is a range of nf  where the 

only on macroscopic properties such as 
the degree distribution. In this article, 
we will discuss recent developments in 
the mathematical literature in the context 
of an elementary yet important process 
called percolation. 

Complex networks are well-known tools 
to model complex architectures arising 
from applications in social, physical, and 
life sciences. The structural properties of 
complex networks have been intensively 
studied since the end of the nineties, and 
the current focus has shifted to dynamic 
processes taking place on networks, such 
as the spread of epidemics. Interestingly, 
these processes are often known to ex-
hibit a phase transition phenomenon. In 
the context of epidemics, whether there 
will be an outbreak or not depends cru-
cially on whether the infection probability 
is above or below the epidemic thresh-
old. The behavior near the point of phase 
transition is called the critical behavior, 
which in a sense captures the mechanism 
of this phase transition. In the late nine-
ties, physicists started studying critical be-
havior in complex networks due to their 
applications in condensed matter theory. 
The overall wisdom from this vast phys-
ics literature is that the intrinsic nature 
of the critical behavior is universal in the 
sense that the behavior does not depend 
on the exact description of the underlying 
complex network, but instead depends 
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defined in (2), and define 
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Then ( ( ))Zn < <m 3 3m-  can be viewed as 
a stochastic process as the percolation 
parameter transitions through the critical 
window, i.e. m increases from 3-  to 3+ . 
In the context of the ‘race to become a 
giant’, ( ( ))Zn < <m 3 3m-  describes the mov-
ie of this race. Therefore it is desirable to 
study the limit of ( ( ))Zn < <m 3 3m- .

For the complete graph, 3
2t = , and 

Aldous [2] showed that ( ( ))Zn < <m 3 3m-  
converges to a process called an augment-
ed multiplicative coalescent. To intuitively 
understand this evolution, note that, after 
increasing m slightly, a new edge might ap-
pear in the graph, and due to the homo-
geneity in the connectivity structure of Kn, 
this edge selects two end-points uniformly 
at random. For this reason, two compo-
nents ( ( ))pC c( )i m  and ( ( ))pC c( )j m  merge if 
the end-points are selected from ( ( ))pC c( )i m  
and ( ( ))pC c( )j m  respectively, which oc-
curs at rate proportional to | ( ( ))|pC c( )i #m  
| ( ( ))|pC c( )j m  and create a component of size 
| ( ( ))| | ( ( ))|p pC Cc c( ) ( )i jm m+ . This merging dy-
namics of a collection of particles accord-
ing to the product of their sizes is known 
as the multiplicative coalescent. Moreover, 
following the same logic, a surplus edge is 
created in ( ( ))pC c( )i m  at rate proportional to 
| ( ( ))|pC c

2
( )i m . The creation of surplus edges 

can also be augmented in the evolution of 
the component sizes (the augmented ver-
sion was later observed in [3] ).

(2) Global metric structure. One can also 
ask, not only about component functionals 
but about the global structure of these criti-
cal components. Of course, the term global 
structure is a bit vague; however, this can 
be formalized. Each component C can be 
viewed as a metric space, equipped with a 
measure on the associated Borel sigma-al-
gebra. The metric on C is the graph-dis-
tance where (i) each edge has length one, 
(ii) the measure being proportional to the 
counting measure, i.e., for any A C1 , the 
measure of A is given by ( ) | |/| |A A Cctn = . 
Then, ( ( ))pC c( )i m  can be viewed as a ran-

where 3
1h =  for G Kn n= . In this regime, the 

pioneering works of Janson, Knuth, Luczak 
and Pittel [7] and Aldous [2] identified 
some unique and fascinating features (de-
scribed in more detail later). In fact, it was 
shown that (| ( )| , ( ( )))SPn p pC C/

i
2 3

1( ) ( )i i $
-  

converges to a non-degenerate random 
vector, in contrast with the sub/supercrit-
ical regimes described above. Non-degen-
erate scaling limits is the characteristic 
feature of the critical window. Further, for 
any i 1$ , ( ( ))SP pC( )i  is of constant order, 
so that the surplus-edge count for large 
components starts to grow in the critical 
window. The above two properties hold for 
all values of m in (2); in this sense, there 
is not a single critical value, but a whole 
‘window’ of critical values over which the 
phase transition happens.

Paul Erdős described the percolation 
process as the race between the compo-
nents to become the giant. The mental 
picture is that the collection of trees in 
the barely subcritical regime are the par-
ticipants of this race and the component 
that outnumbers the other components in 
terms of the number of vertices wins the 
race. As the percolation parameter transi-
tions through the critical window with m 
increasing, components merge with each 
other and grow in size and complexity. 
Due to this merging dynamics, the larg-
est component can consist of completely 
disjoint sets of vertices at two different 
times 1 2!m m , and the race is on. How- 
ever, at the end of the critical window, 
when m becomes sufficiently large, the 
leader ( ( ))pC c( )1 m  stops changing and this 
leader becomes the young giant compo-
nent at the end of the critical window. At 
the barely supercritical phase, the race 
ends and the largest component stays the 
largest throughout the future of the perco-
lation process. See Figure 1.

Scaling limits of critical components
We now describe the key scaling limit re-
sults about the percolation process in the 
critical window.

(1) Evolution of component functionals. 
For each fixed < <3 3m- , consider ( )pc m  

graph shows qualitatively similar features 
as the sub/supercritical phases and the 
critical behavior is observed only when nf  
is chosen appropriately. In most situations, 
this means that ( )nnf H= h- , where 0>h  
is a constant depending on Gn. To build a 
more concrete understanding, let us dive 
deeply into a classical case where ,G Kn n=
the complete graph.

Critical window on complete graph
Erdős and Rényi [6] were the first to identify 
the phase transition (1) on the complete 
graph Kn with pc n

1=  and .3
1h =  An array of 

subsequent research has given us a more 
complete understanding of the critical be-
havior around ( ) ,p p1 n c" f=  which we 
now describe. The proofs of these results 
can be found in [8]. For a component C, let 
SP( )C  denote the number of surplus edges, 
i.e., the number of edges to be deleted to 
make C a tree. In a sense, SP( )C  measures 
the complexity of the structure of C.

Barely subcritical phase: ( )p p 1c nf= -  
with n /n

1 3 " 3f . Then for each fixed i 1$ , 
as n " 3,

( )

| ( ) |
,

log n

p

2
1

C

n n
2 3
( )i

"
f f-

P

and

( : ( ( )) ) .SPi p 1 0>P C( )i "7

Thus, even if p pc. , ( )K pn  shows the two 
characteristic features of the subcritical re-
gime in this phase: first, the largest com-
ponent is not distinctively larger than the 
second-largest component, and second, 
( )K pn  is essentially a collection of trees.
Barely supercritical phase: ( )p p 1c nf= +  

with n /n
1 3 " 3f . Then, as n " 3, 
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Thus, in this regime, a unique giant com-
ponent is born which outnumber all other 
components, and the giant is complex in 
the sense that there is a growing number 
of surplus edges.

Critical window: The phase transition 
takes place between the barely subcritical 
and supercritical regimes when .nn 3

1
+f -

This regime is known as the critical win-
dow for the phase transition. More precise-
ly, the critical window is defined to be the 
values of p given by

( ) ( ), ,p p n1 < <c c 3 3m m m= + -h- (2)

ε > 0 εn � n−η εn ∼ n−η εn � n−η ε > 0
Subcritical Critical window Supercritical

Mostly trees Components merge Birth of giant

Figure 1
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Thus 3
2t =  and 3

1h d= = . Moreover, the 
evolution of ( ( ))Zn < <m 3 3m-  over the crit-
ical window ( ( ))Zn < <m 3 3m-  turns out to 
be same as the complete graph. Thus, the 
critical behavior is indistinguishable com-
pared to that in the homogeneous instance 
of the complete graph. 

Heavy-tailed behavior. For ( , )3 4!x , 
the asymptotic degree distribution has 
an infinite third moment, but a finite sec-
ond moment. Here the critical window 
turns out to be ( )p p n1 ( )/( )

c
3 1m= + x x- - - , 

| ( ( ))|pC c( )i m  is of the order n( )/( )2 1x x- -  for 
each fixed i 1$ , whilst distances scale like 
n( )/( )3 1x x- - . Thus ( )/( )2 1t x x= - -  and 

( )/( )3 1h d x x= = - - . The scaling lim-
its for the component sizes and its met-
ric structure turn out to be fundamentally 
different. Figure 3 is a visualization of the 
metric structure of these critical compo-
nents. (This is not an exact simulation. 
The picture is taken from Igor Kortchems-
ki’s website.) As we can see in this case, 
the extremal-degree vertices play a crucial 
role in the connectivity pattern of the crit-
ical components, and if we remove these 
extremal degree vertices, then the critical 
components fall apart. 

Why is finite third-moment condition im-
portant?
To understand the relevance of the finite 
third-moment condition, let us look at the 
local structures of Gn, the uniform graph 
with given degrees. For such random 
graphs, neighborhoods of most vertices 
can be approximated by neighborhoods 
of the root of an infinite random rooted 
tree. The degree of a neighbor of a vertex 
is approximately given by the size-biased 
distribution 

( )
|{ : }|

.D k
d

k i d k
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n
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Therefore, the finite neighborhoods can 
be coupled with a branching process with 
progeny D 1*

n - . The expectation is 
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When the percolation probability is p
n
1. o , 

then the local neighborhood structure 
looks like a critical branching process, and 
therefore pc n

1= o . Notice now that the vari-
ance of this branching process depends on 
the third moment of the degree distribu-
tion. This is the reason why we observe 

sality of the critical behavior with respect to 
the behavior on complete graphs. This has 
motivated extensive literature in physics 
and has led to a wide array of conjectures 
and heuristic deductions of the associated 
critical exponents. In a nutshell, these con-
jectures can be described as follows:

The intrinsic nature of the critical behavior 
does not depend on the exact description 
of the model, but only on moment condi-
tions on the degree distribution. There are 
two major universality classes correspond-
ing to the critical regime and the nature 
of the emergence of the giant depends on 
whether the degree distribution has an as-
ymptotically finite third moment or infinite 
third moment. 

In [5], our objective was to understand 
the notion of universality of this critical 
behavior. More precisely, suppose that we 
are given a degree sequence ( )d d [ ]

n
i
n

i n= !  
for each n 1$ , and Gn is uniformly chosen 
from all graphs with degree sequence dn. 
Instead of stating the moment conditions, 
let us suppose that the asymptotic empiri-
cal degree distribution follows a power-law 
with exponent x.

Erdős–Rényi universality class. For 4>x , 
the asymptotic empirical degree distri-
bution has a finite third moment. In this 
case, the critical window turns out to be 

( )p p n1 /
c

1 3m= + - , the maximal compo-
nent sizes | ( ( ))|pC c( )i m , for any fixed i, are 
of the order n /2 3 in the critical regime, 
whilst typical distances in these maximal 
connected components scale like n /1 3. 

dom element from M, the space of metric 
spaces with an associated probability mea-
sure. For ( , , )dM M M!n=  and a 0> , de-
fine aM to be the measured metric space 
( , , )dM a n . Then the goal is to 

( ( ( )) .n p

find the distributional limit of

C c i 1( )i m $
d-_ i

The limit is usually a random metric space 
that is compact with probability 1. Since 
the limit is obtained after rescaling of 
graph-distances by nd, the distances in 
( ( ))pC c( )i m  scale as nd. The above quantity 

is an M-valued sequence. Of course, the 
topology on M is important, and one can 
consider the Gromov weak-topology, or 
stronger the Gromov–Hausdorff–Prokhov 
topology.

Addario-Berry, Broutin and Goldschimdt 
[1] proved such a scaling limit result for 
G Kn n=  with 3

1d = . The description of this 
beautiful limiting random metric space is 
out of scope here, and the reader is referred 
to Figure 2 for a visualization of this metric 
space. (This is not an exact simulation. The 
picture is taken from Igor Kortchemski’s 
website.) The visualization shows that the 
global structure of ( ( ))pC c( )i m  looks mostly 
like a tree with n /2 3 vertices with distances 
scaling like n /1 3, and the red lines indicate 
the surplus edges.

Effect of degree-inhomogeneity

Two major universality classes
While studying phase transition on complex 
networks, one is interested in the univer-

size = n
2
3surplus = Poisson distances = n

1
3

Figure 2  A visualization of the global structure of largest components in the critical window for G Kn n= .
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size = n
τ−2
τ−1surplus = Poisson distances = n

τ−3
τ−1

Figure 3  A visualization of the global structure of largest components in the critical window for ( , )3 4!x .

havior for this model shows that the criti-
cal window is given by

( ) ( , ),p n 0forc c2
3

!m m m m=
x- -

for some explicitly computable cm . The key 
observation here is that the critical window 
is of finite length, i.e., ( , )0 c!m m , which is 
in stark contrast with the other behaviors 
above. Thus the race between components 
suddenly ends at a finite location of the 
critical window, and a tiny giant compo-
nent emerges at cm m= . This observation 
is rather surprising and had not been pre-
dicted by the extensive literature in the 
substantial physics community.

We have just started exploring the crit-
ical behavior on scale-free networks, with 
many interesting questions yet to be stud-
ied. For example, recalling the analogy of 
race between the components, currently, 
we know the scaling limits of the rescaled 
component sizes at each fixed location of 
this race, i.e., for each fixed ( , ) .0 c!m m

Can we understand the whole movie of 
this race as m increases? The evolution 
of components is clearly quite different 
from the multiplicative coalescent, since 
all the large components merge with each 
other within a finite time. Also, can we 
understand the global structure of these 
critical components? The study of such 
questions will unravel completely new 
types of scaling objects, which makes the 
critical behavior of scale-free networks 
an interesting avenue of future research 
for all of us.	 s
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( )pn n 1$  with lim inf p 0>n n"3 , the graph 
obtained by applying percolation with 
probability pn remains supercritical. Thus, 
in order to observe the percolation critical 
behavior, one needs to take p nc +

h-  for 
some 0>h .

In this case, working with uniform 
graphs becomes challenging, since well-
known algorithms to generate them do not 
work. Instead, let us consider a simpler 
model with independent edge connections. 
Suppose each vertex is equipped with 
weight wi (think of it as the average de-
gree), and the empirical distribution of wi’s 
is asymptotically a power-law with expo-
nent ( , )2 3!x . The graph Gn is constructed 
by keeping an edge between i and j with 
probability 

.p e1 /
ij

w w wi j ii|= - - /

An investigation [4] about the critical be-

universality of these local neighborhood 
structures compared to the homogeneous 
model as long as the finite third-moment 
condition holds. On the other hand, if this 
condition fails, then vertices of extremal 
degree start appearing leading to struc-
tures like Figure 3.

A new universality class
Both the above universality classes as-
sume a finite second-moment condition on 
the degree distribution. This condition fails 
if the power-law exponent of the degree 
distribution satisfies ( , )2 3!x . Such net-
works are often called scale-free networks 
in the literature and are of particular inter-
est due to their ubiquitous appearance in 
the World Wide Web, social networks, pro-
tein interaction networks. One of the well-
known features of scale-free networks is 
that these networks are robust under ran-
dom edge-deletion, i.e., for any sequence 
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