Problemen

Problem Section

This Problem Section is open to everyone; everybody is encouraged to send in solutions and propose problems. Group contributions are welcome. We will select the most elegant solutions for publication. For this, solutions should be received before **15 January 2020**. The solutions of the problems in this issue will appear in the next issue.

Problem A (proposed by Onno Berrevoets)

Let $F \in \mathbb{Z}[X]$ be a monic polynomial of degree 4. Let $A \subset \mathbb{Z}$ with $\#A \ge 5$ be such that for all $a \in A$ we have $2^{2019} | F(a)$. Prove that there exist distinct $a, a' \in A$ such that $a \equiv a' \mod 2^{202}$.

Problem B (proposed by Jan Draisma)

- Let $n \in \mathbb{Z}_{\geq 2}$ and let *S* be a non-empty subset of $\{1, 2, ..., n-1\}$.
- 1. Prove that there exists an *n*-th root of unity $z \in \mathbb{C}$ such that the real part of $\sum_{i \in S} z^i$ is smaller than or equal to $-\frac{1}{2}$.
- 2. Suppose that *n* is not a power of 2. Prove that the $-\frac{1}{2}$ in the previous part is optimal in the following sense: there exists a non-empty subset *S* of $\{1, 2, ..., n-1\}$ such that for all *n*-th roots of unity *z*, the real part of $\sum_{i \in S} z^i$ is at least $-\frac{1}{2}$.

Problem C (proposed by Onno Berrevoets)

Let $n \ge 1$ be an integer. Denote by S_n the permutation group on $\{1,...,n\}$. An element $\sigma \in S_n$ is called *representable* if there exists a polynomial $f \in \mathbb{Z}[X]$ such that for all $x \in \{1,...,n\}$ we have $\sigma(x) = f(x)$. What is the number of representable elements of S_n ?

Edition 2019-3 We received solutions from Hans Samuels Brusse, Hans van Luipen and Thijmen Krebs.

Problem 2019-3/A (proposed by Hendrik Lenstra)

Let $\tau : \mathbb{Z}_{>0} \to \mathbb{Z}_{>0}$ be the map such that $\tau(n)$ is the number of positive divisors of n for any $n \in \mathbb{Z}_{>0}$. Show that there are uncountably many maps $f : \mathbb{Z}_{>0} \to \mathbb{Z}_{>0}$ such that $f \circ f = \tau$. Note: This is a follow-up to Problem A of the March 2018 edition.

Solution This solution is based on the solution by Thijmen Krebs.

We can construct uncountably many such maps f as follows. Let $S_1 \cup S_0$ be a partition of the odd primes with S_1 infinite, and let $g_1 : S_1 \to S_0$ be any surjection. Inductively on $i \ge 2$, let $S_i := \tau^{-1}(S_{i-2})$ and pick any surjection $g_i : S_i \to S_{i-1}$ such that for all $n \in S_{i-2}$, we have $g_i(\tau^{-1}(n)) = g_{i-1}^{-1}(n)$ (and in particular, $g_{i-1} \circ g_i = \tau |_{S_i}$). Note that such a surjection exists because $\tau^{-1}(n)$ is (countably) infinite for any $n \in \mathbb{Z}_{>1}$. For example, $\tau^{-1}(n)$ contains p^{n-1} for all primes p.

It is easy to verify that the S_i are disjoint. Moreover, $(S_i)_{i\geq 0}$ forms a partition of $\mathbb{Z}_{>2}$, since for all n > 2 we have $2 \le \tau(n) < n$, meaning there is an i > 0 such that $\tau^i(n) = 2$ (which means either $n \in S_{2i-1}$ or $n \in S_{2i-2}$). We now define f by f(1) = 1, f(n) = 2 for $n \in \{2\} \cup S_0$, and $f(n) = g_i(n)$ for $n \in S_i$ with $i \ge 1$. This gives a well-defined map from $\mathbb{Z}_{>0} \to \mathbb{Z}_{>0}$. We readily verify that $f^2(1) = 1 = \tau(1)$, $f^2(n) = 2 = \tau(n)$ for n prime, and $f^2(n) = g_{i-1}(g_i(n)) = \tau(n)$ for $n \in S_i$ with $i \ge 2$. Since there are uncountably many infinite subsets of the primes, the choice of S_1 is already sufficient to show there are uncountably many possible f satisfying $f \circ f = \tau$.

Redactie: Onno Berrevoets, Rob Eggermont en Daan van Gent problems@nieuwarchief.nl www.nieuwarchief.nl/problems Solutions

Problem 2019-3/B (proposed by Daan van Gent)

Let *X* be a set and $*: X^2 \to X$ a binary operator satisfying the following properties: 1. $(\forall x \in X) \ x * x = x;$

2. $(\forall x, y, z \in X) (x * y) * z = (y * z) * x.$

Show that there exits an injective map $f: X \to 2^X$ that for all $x, y \in X$ satisfies $f(x * y) = f(x) \cap f(y)$.

Solution This solution is based on the solutions by Hans van Luipen and Hans Samuels Brusse.

We first prove that * is commutative. We have

(x * y) * x = (y * x) * x = (x * x) * y = x * y.

Using this and the given properties of *, we find

$$x * y = (x * y) * (x * y) = (y * (x * y)) * x = ((x * y) * x) * y = (x * y) * y = (y * y) * x = y * x,$$

so indeed * is commutative. We can now also prove that * is associative, since

$$(x * y) * z = (y * z) * x = x * (y * z).$$

For $a \in X$, we define $f(a) = \bigcup_{x \in X} \{a * x\}$. If $c \in f(a) \cap f(b)$, there exist $x, y \in X$ such that c = a * x = b * y. This means

$$c = a * x = (a * a) * x = a * (a * x) = a * (b * y) = (a * b) * y = y * (a * b) \in f(a * b).$$

Conversely, if $c \in f(a * b)$, there is $x \in X$ such that c = (a * b) * x, so $c = a * (b * x) \in f(a)$, and likewise, $c = (b * a) * x = b * (a * x) \in f(b)$, so we find $c \in f(a) \cap f(b)$. We conclude

$$f(a * b) = f(a) \cap f(b).$$

It remains to show that *f* is injective. Suppose that f(a) = f(b). Then there are $x, y \in X$ such that b = a * x and a = b * y. Observe that

$$a * b = (b * y) * b = (b * b) * y = b * y = a,$$

and by a symmetrical argument, we conclude

$$a = a * b = b * a = b.$$

So *f* is injective, as was to be shown.

Problem 2019-3/C (proposed by Onno Berrevoets)

- a. Does there exist an infinite set $X \subset \mathbb{Z}_{>0}$ such that for all pairwise distinct $a, b, c \in X$ and all $n \in \mathbb{Z}_{>0}$ we have $gcd(a^n + b^n, c) = 1$?
- b* Does there exist an infinite set $X \subset \mathbb{Z}_{>0}$ such that for all pairwise distinct $a, b, c, d \in X$ and all $n \in \mathbb{Z}_{>0}$ we have $gcd(a^n + b^n + c^n, d) = 1$?

Solution We received a solution to part a by Thijmen Krebs. Part b remains open.

Let *X* be the set of squares p^2 for each prime $p \equiv 3 \pmod{4}$. We verify that $p^{2n} + q^{2n}$ is relatively prime to r^2 for any $n \in \mathbb{Z}_{>0}$. Indeed, if it were not, then we would have $p^{2n} + q^{2n} \equiv 0 \pmod{r}$. Since *q* is invertible modulo *r*, we can rewrite this as $(pq^{-1})^{2n} \equiv -1 \pmod{r}$. This would give a contradiction, since the left hand side is a square, but -1 is not a square modulo *r* if $r \equiv 3 \pmod{4}$.

