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The designs are intricate and creative, 
governed by some broad rules. One com-
mon rule is four-fold symmetry: viewed 
from all the four sides North, East, South 
and West the kolam appears the same. A 
Kolam may have multiple loops (the large 
kolam in Figure 1 has three) but a single 
loop is considered special and is harder to 
achieve, see wikipedia.org/wiki/Kolam and 
www.ikolam.com.

The simplest geometrical shape with 
four-fold symmetry is the square. Rectan-
gles have only two-fold rotational sym-
metry. They serve as modules in building 
larger squares. More complex shapes can 
be broken down into squares and rectan-
gles. Therefore we consider only square 
and rectangular kolams and we will see 
how Fibonacci recurrence can be used to 
generate them.

drawn around dots, which are trickled on 
the floor in a regular grid, as a template. 

Every morning before sunrise, women in 
the south of India clean their doorsteps 
and draw elaborate figures with rice pow-
der in front of their homes. Through the 
day, these drawings get walked on, washed 
out in the rain, or blown away by the wind. 
A new figure is drawn on the next day. 
These drawings are thought to bring pros-
perity to the homes and they are a sign 
of welcome. They are known as kolams 
and the mathematics behind this folk art is 
fascinating.

Special kolams, large with bewildering 
complexity are drawn on festival days. On 
such occasions, kolam competitions are 
held in temples. The folk art is handed 
down through generations of women from 
historic times, dating perhaps thousand 
years or more. Today they are nurtured 
by housemaids and housewives both in 
rural and urban areas. A kolam is usually 
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Figure 1 Various Kolams in front of a house in Tamil Nadu (India). The three larger Kolams are of the type considered in 
this paper. The two small Kolams on the red tiles are of a different style. 
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cal counterparts. In Figure 3(b) a square d 2 
has a smaller concentric square a2 and the 
space between the two is filled up with 
four rectangles ( )b c#  placed in a cyclical 
pattern. This construction is the essence 
of Fibonacci kolams. It ensures four-fold 
symmetry. The rectangles are identical and 
need have no symmetry property, but the 
central square a2 should have four-fold 
symmetry, as in Figure 3(b). It contains 
golden rectangles with the sides in ratio 

( )/1 5 2z = +  just as in the case of the 
Fibonacci series (1). Using equations (3a) 
and (3b) one can build a hierarchy of 
square and rectangular kolams leading up 
to any desired size.

ratio of the sides approaches a limiting 
value ( )/ .1 5 2 1 61803fz = + =  called 
the golden ratio. This ratio is ubiquitous in 
nature: in the branching of trees, arrange-
ment of leaves, seeds and flower petals, 
spiral patterns of florets in sun flowers, 
spiral shapes of sea-shells et cetera. The 
golden ratio is also believed to figure 
prominently in Western art: in architecture 
(pyramids, Parthenon) paintings (Leonardo 
da Vinci) sculpture, poetry (Virgil) and mu-
sic [4]. Many claims are controversial.

The Fibonacci series appeared in the 
book Liber Abaci (1202) by the Italian 
mathematician Leonardo of Pisa, also 
known as Fibonacci. It is claimed that the 
numbers appear in the analysis of proso-
dy of Sanskrit poetry by Acharya Hemach-
andra in 1150 A.D., 52 years before Liber 
Abaci [8]. For more on Fibonacci numbers 
see Martin Gardner [2].

For kolam designs we are interested in 
a set of four consecutive integers in a gen-
eralized Fibonacci series such as 3 5 8 13^ h, 
3 4 7 11^ h. In a quartet ( )Q a b c d  we have

,

,

c a b

d b c a b2

= +

= + = + (2)

and we leave it to the reader to verify that 
the a b c d are related as follows:

,

.
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d a bc4
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= +

= + (3b)
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Expressed in standard notation equations 
(3a) and (3b) are

(4a),
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for given F0 and F1.
Equations (3a) and (3b) are the basis 

of Fibonacci kolams. They have geometri-

Fibonacci recurrence
In Fibonacci recurrence, a series of integers 
is generated in which every integer is a 
sum of two preceding integers. Given two 
seed numbers all the subsequent integers 
are determined. The simplest such series 
starts with seeds 0, 1 and is familiar to 
all of us:

0 1 1 2 3 5 8 13 21 34 55 89 144f (1)

These Fibonacci numbers occur in many 
branches of science. In geometry they are 
related to pentagons, decagons and the 
3-dimensional Platonic solids. Rectangles 
with sides as consecutive Fibonacci inte-
gers are known as golden rectangles. The 
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Figure 3 The quartet 2 3 5 8^ h generates a template for a kolam.Figure 2 A square kolam with four-fold symmetry.

Rangoli
The traditional South Indian kolam is 
based on a grid of points and is known 
as PuLLi (dot) kolam or NeLi (curve) kol-
am in Tamil Nadu. There are also kolams 
that are free geometric shapes that usu-
ally has bright colours. Such drawings 
are called rangoli and they are popular 
in North India. Special kolams, large 
with bewildering complexity are drawn 
on festival days. On such occasions, kol-
am competitions are held in temples.

A rangoli at Chennai (flickr.com, B. Balaji)

(a) (b)

The Zeckendorf array
Edouard Zeckendorf was an army doc-
tor from Liège with broad scientific and 
artistic interests. In 1947 he was sent 
to Pakistan as a member of the Unit-
ed Nations peace keeping force. He 
stayed there for several years. During 
that time he wrote a paper on the Fi-
bonacci numbers. The Zeckendorf ar-
ray is named after him. Each next row 
in the array starts by selecting the first 
and third number that have not been 
used yet, and proceeds by Fibonacci 
recurrence. To construct a square Fibo-
nacci kolam, one can choose a quartet 
from this array.
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Square Fibonacci kolams
Using equations (3a) and (3b) a sequence 
of square kolams can be built in a hierar-
chical scheme as shown in the ‘skeleton 
diagrams’ in Figure 4. The larger square 
consists of a smaller square and four cyclic 
rectangles. Assuming the five constituents 
are all single loop, our task is to merge 
them together at splicing points which are 
symmetrically placed to preserve four-fold 
symmetry and create a single loop. In gen-
eral, when all the splices are completed 
the final outcome will be multiple loops. 
This is achieved by a careful choice of 
splicing points.

Some examples of Fibonacci kolams
The construction is based on ( )Q 1 2 3 5  
with ( )5 1 4 2 32 2 #= + . In Figure 5(a) the 
square 52 contains four 2 3#  rectangles 
around a central dot. The rectangles are 
merged around the central dot in a four-
way splice (?) which results in a single 
loop kolam. In Figure 5(b) there are eight 
additional splicing points marked in blue 
and green. This gives us another single 
loop Kolam. To illustrate the effect of the 
choice of splicing points on the number 
of loops, all the blue splicing points are 
omitted in Figure 5(c). Here we get a kolam 
with five loops.

The number of possible 5 2 Fibonacci 
kolams depends on the number of distinct 
2 3#  rectangles and the splicing choices. 
Below we shall see that there are 30 dis-
tinct 2 3#  rectangles each giving a differ-
ent 5 2 kolam.

A 3 5#  Fibonacci kolam can be obtained 
by splicing together a 3 2 and a 2 3#  rect-
angle (3 5 3 2 32# #= + ). In Figure 6(a), 
the 3 2 has three loops but if it is merged 
with a 2 3#  rectangle at three points the 
result is a single loop 3 5#  with two-fold 
symmetry as in Figure 6(b).

The 8 2 Fibonacci kolam is based on 
( )Q 2 3 5 8 : ( )8 2 4 3 52 2 #= + . A 3 5#  Kol-

am is now available from Figure 6. To 
get 2 2 can ( )Q 0 1 1 2  be used? Figure 7(a) 
is the first attempt, but it has an empty 
unit cell at the centre. The generator is 

( )2 0 4 1 12 2 #= + . In Figure 7(b) the four 
1 1#  ‘rectangles’ are the four circled dots 
and the 0 2 can be imagined as a small 
empty square at the centre with area ap-
proaching 0, i.e. the square collapses into 
a point with dimension 0. The clover-leaf 
pattern with four leaves touching at the 
centre is the obvious answer (Figure 7(c)). 

Q(0	  1	  1	  2)	   Q(1	  2	  3	  5)	  
1	   1	   3	  
1	   1	   3	   Q(3	  5	  8	  13)	  

1	   8	   5	  
Q(1	  1	  2	  3	  )	   3	  
1	   2	   1	   3	   5	  
2	   1	   2	   8	  
1	   2	   1	   Q(2	  3	  5	  8)	  

5	   3	   3	  
3	   3	  

5	  
2	  

2	   8	  
5	   5	  

3	  
3	   5	   5	   8	  

	  	  	  	  Q(5	  8	  	  13	  	  21)	  
13	   8	  

8	  

13	  

5	  

5	  

13	  

8	  

8	   13	  

Figure 4 Skeletons of squares for Fibonacci kolams

Figure 5 Three 5 5#  kolams with a four-fold symmetry. (b) and (c) are created from (a) by splicing and unsplicing.

Figure 6 Creating a 3 5#  kolam with a single loop from two separate kolams.

(a) (b) (c)

(a) (b)

( )Q 0 1 1 2

( )Q 3 5 8 13

( )Q 5 8 13 21

( )Q 1 2 3 5

( )Q 1 1 2 3

( )Q 2 3 5 8
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leading to module II (5 8#  and 3 2). Similar-
ly the 8 13#  rectangle in block I traces its 
composition to the module 8 2 and 5 8#  in 
block II. The origins of all square and rect-
angular kolams can be traced to F 11

2 2=  
or F 12

2 2= .
Every third Fibonacci number F3m (m = 

, , ,1 2 3 f) is even since in ( )Q a b c d  d a- = 
b c a b2+ - =  is an even number. Therefore 
d and a are both either even or odd. Since 
F 23 =  is even, so are F6, F9, F12,f (8, 34, 
144,f ). Since F F 11 2= = , all the other Fi-
bonacci numbers are odd.

Figure 9 shows how to build a Fibonacci 
kolam recursively. The 212 Fibonacci kolam 
is constructed from an arrangement of four 
8 13#  kolams around a 52 kolam. They are 
spliced together at six sets of points (24 
in all). Each 8 13#  kolam on its turn is a 
union of an 8 8#  and a 5 8#  kolam.

The Fibonacci kolams described so far 
are all based on the Fibonacci series (1). 
This is a particular example of a general-
ized Fibonacci series Gn ( , , , ,n 0 1 2 3 f= ) 
where the first two starting numbers G0 
and G1 are a and b. The Fibonacci series 
corresponds to 0a =  and 1b = . If 2a =  
and 1b = , we get the series

,2 1 3 4 7 11 18 29 47 76f

known as Lucas series. As long as the Fi-
bonacci recursion

( )G G G n 1>n n n1 2= +- -

is used, the quartet relation ( )Q a b c d  with 
equation (3a) and equation (3b) applies. In 
other words in equations (4a) and (4b) Fn 
can be replaced by Gn. This permits gen-
eralized Fibonacci kolams of any desired 
order, i.e. n n#  or m n#  for all m, n. In 
particular in the Lucas series 4 and all the 
succeeding numbers are different from Fi-
bonacci numbers. For example a 4 4#  gen-
eralized Fibonacci kolam can be based on 

( )Q 2 1 3 4 : ( )4 2 4 1 32 2 #= + . This is illus-
trated in Figures 10(a) and 10(b). A variant 
of 42 based on ( )Q 0 2 2 4 : ( )4 0 4 2 22 2 #= +  
is shown in Figures 10(c)–(f ).

How many distinct kolams exist of a 
given size? This is a problem in combina-
torics since kolams are built from small-
er sub-units. Starting with the smallest 
square 22 single-loop kolams, the only 
symmetric version is the ‘cloverleaf’ pat-
tern in Figure 11(a). The asymmetric ver-
sions in Figure 11(b) are used to build 
2 3#  rectangles (as 2 2 and 1 2# ). After 
enumerating all possible 2 3#  kolams it 

generate square and rectangular kolams of 
any order. The procedure is graphically pre-
sented in Figure 8. There are three blocks 
(I, II, III) each with two columns. The mid-
dle block (II) contains the modules used 
for building the ‘square Fibonacci kolams’ 
in the right block (III) and the ‘rectangular 
Fibonacci kolams’ in the left block (I). Mod-
ules are shown in italics in block II. For 
instance, to find the composition of a 13 2 
Fibonacci kolam (in III) follow the arrows 

This pattern occurs rarely in traditional kol-
ams. Clover-leaf patterns generally occur in 
square Fibonacci kolams whose sides are 
even and enhance the overall aesthetics of 
the kolams.

General construction of Fibonacci kolams
Every Fibonacci kolam — square or rectan-
gle — is composed of a square and rect-
angles. This is seen in the recursive equa-
tions (4a) and (4b). They can be used to 

     

 

 
 

 
  

  
  

  
  

  
  

  
  

  
  

  
  

 

  
  

Figure 8 Recursive procedure for construction of square and rectangular Fibonacci kolams.

Figure 7 A Fibonacci 8 8#  kolam.

(a) (b) (c)

(d) (e)
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was found that the six kolams shown in 
Figure 11(c) are suitable as basic modules. 
They are labelled E, R, G, H, U, S, so that 
the alphabet patterns reflect the shape 
and symmetry property of the kolams. 
Enumeration of larger kolams is a complex 
problem.

Symmetry properties
The dihedral group D4 is the symmetry 
group of the square. It contains the rota-
tions by 0°, 90°, 180°, 270° which we la-
bel by I, R 90^ h, ( )R 180 , R 90-^ h. The re-
flection operators, or mirrors, are ( )M X , 

( )M Y , ( )M 45  and ( )M 45-  for reflections 
about X-axis, Y-axis, diagonal Y X=  and 
the anti-diagonal (Y X=- ). These eight 
operators

I R R R

M X M Y M M

90 180 90

45 45

-

-^
^

^
^
^
^
^h

h
h
h
h

h
h

form the dihedral group. How do these op-
erators alter the shape of ERGHUS kolams? 
In Figure 12, the basic kolam shapes (K) 
are in the top box. Successive rows show 
the effect of different operators on K. Some 
interesting features are as follows:

Figure 11 The 2 2#  and 2 3#  kolams –  building blocks of 
the Fibonacci kolams.Figure 10 Building 4 4#  kolams from 3 1#  or from 2 2#  kolams.

Figure 9 A 21 21#  Fibonacci kolam drawn on a skeleton diagram.

(a) (b) (c)

(d) (e) (f )

(a) (b)

(c)
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1. Of the total 48 (6 8# ) patterns only 30 
are distinct. The remaining 18 are repe-
titions shown as dotted patterns.

2. Only for R and G all the eight operators 
result in distinct patterns (columns 2 
and 3). For E, U, S only four are distinct. 
For H only two give distinct patterns 
[I and ( )R 90 ].

3. Symmetric kolams often have a special 
meaning, as described in the text box 
on the nine goddesses of Navaratri.

Other Fibonacci kolams
In generating square kolams invariably 
rectangular kolams appear as constituents. 
These rectangles are golden rectangles 
(ratio of sides .1 618fz= = ), but they lack 
the two-fold rotational symmetry (appear-
ing the same viewed from north or south). 
‘Rectangles’ with two-fold symmetry can be 
built with two Fibonacci quartets. In analo-
gy with equation (2),

, ,

, ,

, ,

Q a b c d Q a b c d

c a b d c b a b

c a b d c b a b

2

2

1 1 1 1 1 2 2 2 2 2

1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2

= + = + = +

= + = + = +

^ ^h h
(5a)

(5b)

An identity relating all the numbers, in 
analogy with equation (3b) is

.d d a a b c c b2 21 2 1 2 1 2 1 2= + + (6)

The rectangle of sides d d1 2 is composed of 
a concentric rectangle a a1 2 and two pairs 
of rectangles b c1 2 and c b2 1. In each pair, 
one is rotated with respect to the other to 
ensure two-fold rotational symmetry. In ad-
dition, if rectangle a a1 2 has two-fold sym-
metry, the overall kolam d d1 2 has two-fold 
symmetry. The construction is illustrated in 
a 6 7#  kolam in Figure 13 using

( ), ( ) .Q Q4 1 5 6 1 3 4 71 2

This 6 7#  kolam is named Kaprekar kol-
am [5, 6] as all the four digits of the Kap-
rekar constant 6174 appear in the quartets 

( )Q 4 1 5 61  and ( )Q 1 3 4 72 .

Figure 13 Kaprekar kolam drawn on its skeleton diagram.









 

 

 


 

 

 

 


 


Figure 12 Transformations of the ERGHUS kolams.

Nine goddesses
The Hindu festival of Navaratri, which means nine nights in Sanskrit, celebrates the 
nine incarnations of Shakti. There is a different kolam for each incarnation, all single 
loops around nine dots. Each kolam has a symmetry. Seven kolams have a single 
symmetry, a mirror or a point reflection, but two have more. The central kolam has a 
four-fold symmetry. It is a swastika, which means good fortune in Sanskrit. It is not 
hard to find other single loops around nine dots. However, it is hard to find another 
single loop which has a symmetry.

Nine kolams for nine incarnations on the left. Graphs display the symmetries of the kolams on the right.
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Rectangular kolams with two-fold sym-
metry can be drawn with any desired d1 
and d2. A rectangle of sides 7 22#  has the 
ratio / .22 7 3 1428f=  which is a very good 
approximation to r. A rectangle with sides 
7 19#  has the ratio / .19 7 2 7412f=  which 
is a close approximation to e, the natural 
base for logarithms. Both r and e along 
with the golden ratio z, are among the 
most important mathematical constants.

The r-kolam is coded by the quartets

,

.

Q

Q

1 3 4 7

6 8 14 22
1

2

^
^

h
h

At the centre is the linear string 1 6#  and 
the enveloping rectangles are 3 14#  and  
4 8#  (in pairs). They serve as modules for 
the 7 22#  kolam in Figure 14. 

In Figure 15 is drawn a 9 13#  kolam 
based on the quartets

,

.

Q

Q

5 2 7 9

7 3 10 13
1

2

^
^

h
h

The constituent rectangles 5 7#  (at the 
centre) and the surrounding rectangles 
2 10#  and 7 3#  are spliced together at 
2 10#  points to form a 9 13#  single-loop 
kolam.

If we remove the central 5 7#  rectan-
gle from this kolam, then we get the ‘win-
dow-frame’ kolam in Figure 16. A careful 
inspection reveals that it has two loops. It 
can be shown that a window-frame kolam 
can never be single loop whatever be the 
choices of quartets and splices. This is due 
to the fact that there is no central rect-
angle. Since the starting configuration has 
four loops, an even number, parity conser-
vation dictates the minimum number of 
loops as two. We consider the number of 
loops in the next section. Figure 16 A window frame kolam with two loops.

Figure 15 A single loop 9 13#  kolam.

Figure 14 The r-kolam drawn on its skeleton diagram.

Kaprekar’s constant
Take any four digits, not all equal. 
Arrange them in descending and as-
cending order. Subtract to get four 
new digits. Repeat. D. R. Kaprekar, an 
Indian school teacher who published 
a great number of recreational math 
papers, discovered that this process 
always ends up at 6174. This is now 
called Kaprekar’s constant.

8765 5678 3087

8730 0378 8352

8532 2358 6174

7641 1467 6174

- =

- =

- =

- =
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with probabilities 4
1 , 6

1 , 8
1  adding up to 

( . )0 54224
13 . . Finally the probability of l 5=  
is ( . )1 0 0412

1
3
1

4
1

24
1# # # .= . Summaris-

ing, starting from a single loop, after a set 
of four splices the numbers of loops is 1, 
3 or 5 with probabilities 0.417, 0.542 and 
0.041, respectively. 

Notice that a Fibonacci kolam is built 
from five modules and therefore we need 
to splice five loops. The evolution of three 
loops is shown in Figure 18. We leave the 
evolution of five loops as an exercise to the 
reader. As for i 1= , here too the branch-
es are labelled with probabilities. Starting 
with i 3= , the probability of final j 7=  is 

( . )0 00283
1

4
1

5
1

6
1

360
1# # # .=  less than 

0.3%. How do the loops evolve further 
when another four-splice is added? Ulti-
mately we have to deal with a large number 
of four-splices. This can be handled ele-
gantly using matrices of loop probabilities.

loop the result is two loops with proba-
bility one. If it occurs in one of the three 
loops the outcome is two or four loops 
with probabilities 3

2  and 3
1 , respectively. 

Among l loops if a random splicing point 
is chosen between two loops, the loops 
are likely to be the same loop with prob-
ability l

1  and different with probability l
l 1-

. Hence the branches 3 2"  and 3 4"  are 
assigned probabilities 3

2  and 3
1 . After the 

fourth and last splice the end points are 
1, 3 or 5. Their relative probabilities are 
calculated by multiplying the probabili-
ties assigned to each evolutionary path. 
For example l 1=  is the end point of two 
pathways 1 2 1 2 1- - - -  or 1 2 3 2 1- - - - . Their re-
spective probabilities are 1 12

1
2
1

4
1# # # =  

and 1 2
1

3
2

2
1

6
1# # # = . Together they add 

up to ( . )0 41712
5 . . A similar calculation for 

l 3=  as the end point shows three path-
ways 1 2 1 2 3- - - - , 1 2 3 2 3- - - -  and 1 2 3 4 3- - - -  

Evolution of loops
A Fibonacci kolam is assembled by merging 
or splicing five smaller modules at a set 
of points. In general, the final kolam has 
multiple loops. A single loop is achieved 
by a suitable choice of splices. Another re-
quirement prompted by aesthetic reasons 
is that ‘four-sided islands’ are not allowed 
(see section on ‘Square Fibonacci kolams’). 
To elaborate: islands are empty bounded 
regions without a dot. A four-sided island 
appears like a diamond without a dot (Z). 
Four-sided islands arise mainly when splic-
es are made at adjacent points. So gener-
ally splices are made at alternate points. 
They occur along the edges of the constitu-
ent rectangles. In practice, a good strategy 
to obtain maximal splicing consistent with 
a single loop is the following. Splice all 
allowed splicing points at one ‘go’. If the 
number of loops is one, the task is done. 
If not, unsplice one or more sets of four 
points to make the kolam single loop; the 
choice of the sets will require some ‘trial 
and error’ experimentation.

Splicing and unsplicing rules
From a detailed analysis of loop evolutions 
the following empirical rules emerge.

1. A splice between two loops gives one 
loop.

2. A splice within a single loop splits it 
into two loops.

As a converse to above, the unsplicing 
rules are the following.

1. Unsplicing at the intersection of two 
loops gives one loop.

2. Unsplicing within a single loop will split 
it into two loops.

If there are ( )l 1>  loops, an operation 
(splice or unsplice) results in l 1-  or l 1+  
loops, a binary option. A set of four splices 
can be modelled as a binary tree with four 
nodes.

Loop evolution as a binary tree
In Figure 17 a ‘top-down’ tree has its root 
at the top which stands for 1 (number of 
loops). After the first splice there are two 
loops. The second splice alters the num-
ber of loops to one or three at the next 
level depending on whether the splice is 
in a single loop or between two loops. 
We assume this is random and assign 
equal probabilities (2

1 ) to the two branch-
es. If the third splice occurs in a single Figure 18 The binary tree for splicing three loops illustrates the bias towards a small number of loops.

Figure 17 The binary tree associated to splicing a single loop kolam four times, including the transition probabilities. 
Four-fold symmetry requires four splices.
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Loop probability matrix.
Let ( )p ij  be the probability of initial i loops 
leading to j loops for , , ,i j 1 3 5=  as in Fig-
ure 17. The probabilities define a 3 3#  ma-
trix S of nine elements

( )
( )
( )

( )
( )
( )

( )
( )
( )

p
p
p

p
p
p

p
p
p

11
31
51

13
33
53

15
35
55

We have already determined ( ) .p 11 0 417= , 
( ) .p 13 0 542= , ( ) .p 15 0 041= . The full ma-

trix is

\
.
.
.

.

.

.

.

.

.

i j 1 3 5
1
3
5

0 417
0 361
0 200

0 542
0 557
0 570

0 041
0 082
0 230

*

* These probabilities include small contri-
butions from ,j 7 9= .

How do the loop probabilities change 
after two sets of splices? Let the new prob-
abilities be ( )q ij . Then

( ) ( ) ( ) ( ) ( )

( ) ( ) , , .

q ij p i p j p i p j

p i p j i

1 1 3 3

5 5 1 3 5for

= +

+ = (7)

Equation (7) is exactly the same as the rule 
for multiplication of matrix S by itself. Ma-
trix ( )q ij  is simply ( )S S S2) = , where ) 
denotes matrix multiplication. To find the 
probability after three sets of four-splices 
multiply S 2 by S to get S 3, etcetera. These 
matrices are presented in Figure 19. The 
matrix elements quickly converge to nearly 
constant values.

( ) . , ( ) . , ( ) . .p p p11 0 37 13 0 55 15 0 08= = =

( )p ij  is the limiting value of probability 
after a large number of four-splices. No-
tice all the rows are nearly the same. The 
probability of loops after a large number of 
four-splices is independent of the starting 
number. It is the stationary distribution of 
this Markov chain.

The most probable number of loops at 
the end-point is three with a probability of 
0.55 and the probability of the desired sin-
gle loop is 0.37. This leaves a small prob-
ability of 0.08 for the probability of five or 
more loops. The relative probabilities for 
j 1=  and 3 are roughly 2 : 3. These results 
are consistent with an empirical observa-
tion that three loops is the most likely end 
result even for large kolams with a large 
number of splices.

One can estimate the maximum number 
of splicing points available in construct-
ing a Fibonacci kolam. Splices occur along 
edges of the rectangles shown in Figure 3. 
Since splices are chosen at alternate points 
along the edge, the maximum number of 
splices along an edge is /c 2.  for square 
kolams. Since four-fold symmetry forces 
splicing at four symmetrically placed 
points, the maximum, number of splices 
is c2. . For rectangular kolams the maxi-
mum number of splices c c1 2. + . In large 
kolams of size ( )d d 20 302 -= , .c d0 6.  and 
the maximum number of splices is . d1 2  or 
24 36- . The number of four-splices is 6 9- .

It is a remarkable fact that even with 
30.  splices the final number of loops j is 

most likely 1, 3 or 5 with relative probabil-
ities 0.37, 0.55 and 0.08. This is because 

Curvy loops around the globe
Drawing loops around a dotted grid is 
a common practice in several places 
around the globe. In South-West Africa, 
the Chokwe and Luchazi people draw 
curves called lusona in the sand. These 
curves can depict fables or riddles or 
animals. Similar curves can be found 
on the Vanuata Islands (New Hebrides) 
in the Pacific Ocean. Paulus Gerdes, a 
Dutch mathematician who lived and 
worked in Mozambique, wrote several 
books and papers about them. Scientif-
ic works such as [3], but also children’s 
books. A kolam or a lusona is drawn 
by simple hand movements, turning 
left and right. It is natural to study the 
movements from an algorithmic point 
of view. This was done by Gabrielle Al-
louche, Jean-Paul Allouche and Jeffrey 

Shallit. They constructed a kolam from 
the Thue–Morse sequence in [1].

The cover of a children’s book by Paulus Gerdes

 

Figure 19 Convergence of the transition matrices towards the stationary distribution.
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It is remarkable that all Fibonacci kol-
ams can be assembled with only eight 
basic shapes (see box above). Rotations 
and reflections give 31 distinct shapes. 
This enables designing a board game for 
assembling kolam designs on a board 
with a square grid. It can be played by 
one or more players. The game has been 
adapted for play on a computer. Feedback 
from more than 800 users has been pos-
itive. The game is also physically realised 
with a 14 14#  square grid made of thick 
cardboard and 300 white tiles with kolam 
shapes etched on them. s
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the pathways of loop evolution tend to al-
ternately rise and fall keeping the final j to 
low values as illustrated by the binary tree 
diagrams Figures 17 and 18. What goes up 
must come down!

The basic principles underlying the Fi-
bonacci kolams are well understood and 
the rules for splicing/unsplicing the parts 
into a whole are simple. More information 
can be found in [7].

Concluding remarks and summary
Kolams are artistic geometrical drawings 
with curves and loops around dots in a 
square grid. Fibonacci Recurrence is used 
to create a new family of kolams with 
ground rules — single loop, symmetry (four- 
fold for square, and two-fold for rectangle) 
and avoidance of four-sided islands (previ-
ous section) — dictated by aesthetics. Us-
ing generalized Fibonacci series, kolams of 
any desired size are possible.

Although squares and rectangles are 
described in separate sections, in prac-
tice they are inseparable. Square kolams 
as well as rectangular kolams are com-
posed of smaller squares and rectangles 
as implied by equations (3a) and (3b). The 
rectangles in section ‘Square Fibonacci kol-
ams’ are not two-fold symmetric since they 
are based on only one quarter ( )Q a b c d . 
Rectangles in section ‘Other Fibonacci kol-
ams’ are two-fold symmetric since they are 
based on two quartets. Hierarchical struc-
tures involving squares and rectangles are 
possible in building kolams of any arbitrary 
size. The basic modules 22, 32, 2 3#  are 
based on quartets ( )Q 0 1 1 2  and ( )Q 11 2 3 . 
The 22, the clover-leaf pattern is unique 
among kolam patterns. Enumeration of the 
number of these basic modules invokes 
symmetry operators of group theory.

Merging five modules of a Fibonacci 
kolam at splicing points along their edges 
to produce a single loop, is governed by 
simple rules. As the number of splices in-
creases the number of loops goes up and 
down resulting in a small number of loops 

1, 3 or 5 at the end. This can be shown as 
a result of the fact that as each splice is 
added the number of loops is increased 
or decreased by one. This leads to mod-
elling the evolution of loops as a binary 
tree and expressing the loop probabilities 
as elements of a 3 3#  matrix (previous 
section). The relative probabilities of the 
number of loops 1, 3, 5 converge to limit-
ing values of 0.37, 0.55 and 0.08, respec-
tively, as the number of splices becomes 
large. After each set of four-splices the 
number of loops changes by 0, 2 or 4, so 
that the parity of initial and final number 
of loops is conserved. Since the starting 
number of loops is odd (5) the final num-
ber of loops is also odd (1, 3 or 5). When 
the starting number is even (4), as in the 
case of window-frame kolam, the final 
number of loops is 2 since the parity has 
to be even. 
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The Kolam Game
Kolams are built from single cells with a single dot encircled by a loop that touches 
one or more sides. There are eight basic cell patterns. All tiles have a mirror symmetry, 
except for the last one.

The Kolam Game is played with ten tiles, 
the eight basic tiles and the mirror of the 
unsymmetric tile and a blank. Each tile 
counts for a number of points, as shown 
below the tiles, with no points for the 
blank. Players draw tiles from the bank 
and place them on the board. Tiles have 
to be contiguous. The game is played on 
a board, shown on the right. The initial 
tile has to be placed on one of the central 
red squares. As in the game of Scrabble, 
there are special squares which multiply 
the value of the tile. By now, this game has 
been tested by more than 800 users. For 
details on the rules of the game, see [7].

The 8 cells as tiles for a board game.
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The board of the game (14 × 14).


