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same order of magnitude, and in some ar-
eas even much higher (see [6, 23] ).

In this essay we present several explicit 
real-life examples of the mathematics be-
hind Big Data, highlighting the role and im-
portance of specific areas of mathematics 
in these contexts. We show a wide variety 
of examples: search engines, virtual proto-
typing in manufacturing, data assimilation, 
web data analytics, healthcare, recommen-
dation systems, genomics and other omics 
sciences, and precision farming. In this way, 
we hope to stimulate mathematicians to 
work on topics related to Big Data, as well 
as to encourage industries and research-
ers in computer science and other fields 
to collaborate with mathematicians in this 
direction.

Similar and more detailed accounts have 
appeared at other places, see, e.g., [11, 19], 
National Research Council (2013) and the 
London Workshop Report on Statistics and 
Science (http://bit.ly/londonreport).

to show the importance of mathematics in 
Big Data.

The role of mathematics is easy to 
overlook and not fully recognized because 
technological advances are much more 
visible than mathematical advances even 
though the latter often have more impact. 
Here is a small illustration. It is common 
knowledge that the speed-up of comput-
ers due to technological advances follows 
Moore’s Law: doubling of speed every 
eighteen months. However, it is much less 
known that the speed-up due to advances 
in mathematical methods in scientific com-
puting and optimization is at least of the 

‘Big Data’ has become a buzz word in the 
last decade, both in science and among 
the general public. Scientists from all ar-
eas encounter this in the shift of content 
and methods in their research as well as 
in current scientific funding programmes. 
For example, Big Data is one of the select-
ed routes in the Dutch National Scientific 
Agenda (NWA) and the large funding pro-
gramme Commit2Data has been launched 
in the Dutch Digital Delta in 2016.

As the Big Data Team of the 4TU Applied 
Mathematics Institute, we feel that math-
ematicians should actively engage in Big 
Data activities. It is the goal of this paper 
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the modeling simplifications (structural un-
certainty) and the uncertainty in knowing 
model parameters (parameter uncertainty). 
On the other hand, given a complicated 
mathematical model, it is important to 
know how accurately numerical methods 
can approximate specified outputs from 
this model.

The term Uncertainty Quantification is 
often used as general term for scientific 
research in this area. There exist several 
mathematical approaches to study this un-
certainty. One such approach is applying 
statistical techniques related to experimen-
tal design for computer experiments like 
Latin hypercube sampling and response 
surface methods. Another approach is to 
cast the mathematical model as a stochas-
tic partial differential equation and try to 
solve that. Recent high-level mathematics 
combining analysis and stochastics is used 
such as perturbation expansion methods 
for random fields, stochastic operator ex-
pansions and polynomial chaos (Wiener 
chaos).

Model order reduction (MOR) tech-
niques (see, e.g., [23] ) have been recent-
ly introduced and exploited to overcome 
the issue of severe computational times 
required for solving mathematical models 
of real-life processes. Over the past four 
decades, reduced-order models have been 
developed aimed at replacing the origi-
nal large-dimension numerical problem 
(typically called high-fidelity approxima-
tion) by a reduced problem of substan-
tially smaller dimension. Depending on 
the context, there are different strategies 
to generate the reduced problem from the 
high-fidelity one, e.g., Krylov subspace 
based methods, moment matching tech-
niques, proper orthogonal decomposi-
tion, balanced truncation, reduced basis 
methods. Very short CPU times and lim-
ited storage capacities demanded today 
by MOR methods allow to tackle a wide 
range of problems arising in engineering, 
computational science, and physical and 
biological sciences.

Data assimilation
Weather forecasting, for some people the 
main reason to watch the news, is a data- 
intensive computational problem with many 
economic implications (agriculture, hospi-
tality business, airlines, healthcare, large 
public events). The change over time of 
measurable atmospheric quantities can be 

huge, at the moment it would have hun-
dreds of billions of rows and columns. In 
the beginning of this century, major speed 
gains were achieved due to sophisticated 
new methods from, mainly, linear alge-
bra [5]. Another interesting mathematical 
and practical problem is the vulnerability 
of PageRank to deliberate manipulations, 
such as link farms created intentionally to 
boost the PageRank.

If we want to predict effectiveness of 
ranking, it is also important to understand 
its relation to the network structure. Can 
we predict the largest PageRank, inves-
tigate its stability, pick up a signal from 
hidden communities? Can we use ranking 
to detect important changes in the net-
work structure? A lot of empirical results 
are available but they do not answer these 
questions in sufficient generality. To solve 
these and other problems we need to de-
velop new approaches in probability theo-
ry and the theory of random graphs (see 
e.g. [9] ).

Virtual prototyping in manufacturing
High development costs in industry have 
led many manufacturers to replace build-
ing and testing physical prototypes by 
virtual prototyping, i.e., testing using 
large-scale simulations of extensive math-
ematical models based on physical princi-
ples. Specific examples are the automotive 
industry and the aircraft industry (see, e.g., 
the Virtual Hybrid Testing Framework of Air-
bus). Such simulations should be handled 
with care since there is uncertainty in the 
outcomes due to both model limitations 
and the numerical accuracy of the simula-
tions, often requiring solving large systems 
of differential equations. On the one hand 
there is uncertainty due to replacing phys-
ical reality by a mathematical model. This 
involves both the uncertainty caused by 

Search engines
The quality of a search engine depends 
greatly on ranking algorithms that define 
in which order web pages will appear for 
the user. This is indeed crucial because 
most of us do not go beyond the first 
page of search results. Google’s PageRank, 
at the very heart of the success of Google, 
was the first and most famous ranking al-
gorithm.

The revolutionary idea of Google was 
that the importance of a web page de-
pends on quantity, but also on quality of 
links that point to this page. This can be 
seen on a small example from Wikipedia 
in Figure 1.

The size of the nodes represents their 
PageRank score. Node B has a large Page-
Rank because it has many incoming links. 
The PageRank of node C is high because 
it received the only outgoing link from 
the important node B. Mathematically, the 
World Wide Web is modelled as a graph 
with pages as nodes and hyperlinks as di-
rected edges, and then a large set of equa-
tions is solved to find the PageRank values 
for each node in the graph.

Right after PageRank was introduced, 
its fast computation became a problem of 
great interest because the Google matrix is 

Figure 1 PageRank, example from Wikipedia.

Pagerank
‘Easily bored’ surfer. Consider a simple model of a surfer browsing web pages. With 
probability a, the surfer follows a randomly chosen outgoing link of a page, and with 
probability 1 a-  the surfer is bored and jumps to a random page. Initially, Google 
used .0 85a = . PageRank of a page is the stationary (long-run) probability that the 
surfer visits this page.
Eigenvector. Equivalently, PageRank is the so-called dominant left eigenvector of the 
transition matrix of the above process: the entry ( , )i j  of this matrix is the probability 
that the surfer on page i will proceed to page j. Such an eigenvector is unique. The 
PageRank of a web page is the corresponding component of this unique dominant 
left eigenvector.
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turned out that the distance (the number 
of hops along the edges of the Facebook 
graph) between two Facebook users is on 
average less than 4!

Healthcare
Medical devices like MRI scanners obtain 
large image data at relatively low velocity. 
Efforts are undertaken to reduce the time it 
takes to makes scans (typically thirty min-
utes) since hospitals could obtain higher 
efficiency of the expensive MRI equipment 
and patients would suffer less from the un-
pleasant high noise levels. Making scans at 
a lower resolution is not an option because 
of medical reasons. An MRI scan uses mag-
netic fields to order the spins of hydrogen 
atoms and radio waves to disturb these 
spins. When the spins return to their origi-
nal position, energy is emitted. This energy 
is measured so that one gets an indication 
of the amount of tissue. Using magnetic 
gradients it is possible to localize these 
measurements.

The mathematical bottom line of this 
procedure is that MRI scans produce Fouri-
er coefficients one by one. Traditional ap-
proaches to reconstruction algorithms can-
not yield the desired reduction of scanning 
time because of the so-called Nyquist– 
Shannon criterion. Again, advanced math-
ematical techniques have provided the 
breakthrough. The basic idea is to project 

Probability theory has been essential in 
developing algorithms such as Count-Min 
Sketch, MinHash and HyperLogLog that use 
random hash functions to store answers. 
Such algorithms may be accurate within 
2% while using only memory in the order 
of the (iterated) logarithm of the original 
sample size. An important issue in devel-
oping in these algorithms is to control the 
variance of the estimators, in order to get 
consistently accurate estimates.

HyperLogLog is one of the most ele-
gant mathematical solutions for counting 
distinct objects in Big Data applications, 
widely used in practice. Researchers at 
Google [15] state that Google’s data anal-
ysis system PowerDrill routinely performs 
about five million ‘count distinct objects’ 
computations per day. In about one hun-
dred cases, the resulting number is greater 
than one billion. In 2014 HyperLogLog was 
implemented by Amazon’s data structure 
store Redis as well. An interesting human 
interest note: the commands of HyperLo-
gLog begin with PF - the initials of the 
French mathematician Philippe Flajolet who 
developed this algorithm (see, e.g., [12] ).

Maybe even more exciting from a scien-
tific point of view was the result in [3] 
where HyperLogLog was used to accom-
plish an incredible task of computing av-
erage distances in the complete Facebook 
graph of more than 700 million nodes. It 

described in terms of dynamical systems, 
transferring information in time-ordered 
observed data to a physical model of the 
system. This process is often referred to 
as data-assimilation. Its development has 
been highly influenced by professionals 
working in the atmospheric and oceano-
graphic sciences. When discretized in 
space, a typical model for numerical weath-
er prediction is a differential equation sys-
tem with dimension of order 109 [18]. The 
state variable of the dynamical system may 
represent unknown quantities such as for 
example velocity, temperature and pres-
sure at a grid of locations.

The application of mathematical models 
to large dynamic data sets has naturally 
popped up in many other communities as 
well. Within signal processing recovering 
the unknown state of the dynamical system 
is known as filtering or smoothing, where 
the first term refers to online recovery (as 
opposed to static recovery). Probabilists 
and statisticians usually speak of state and 
parameter estimation. Over the past thirty 
years there has been tremendous progress 
for this kind of problems. Under specific 
assumptions on the dynamical system 
computationally efficient methods such as 
the (ensemble) Kalman filter can be used. 
In more general settings, a Bayesian for-
mulation of the problem and application 
of Markov Chain Monte Carlo methods 
and Sequential Monte Carlo methods can 
be exploited (see, e.g., [21, 22] ). Where-
as these methods are presently not yet 
applicable to weather forecasting, they 
have proved to be powerful in simpli-
fied problems of less demanding dimen-
sions and constitute a very active area of 
research [8, 17].

Web data analytics
Many companies collect large amounts of 
customer data through their web services. 
However, having these data does not mean 
that we already know everything. Even 
simple tasks like counting the number of 
distinct records in a large customer da-
tabase (e.g., the number of distinct cus-
tomers that use a certain service) requires 
advanced mathematics. The exact counting 
is computationally prohibitive mainly be-
cause we cannot keep all objects in the 
restricted working memory of a computer. 
However, we might not need that level of 
accuracy — in such cases it is often suffi-
cient to work with approximate estimates. 

HyperLogLog
Hash functions. Each digital object is converted to a sequence of zero’s and one’s 
using hash functions. On a set of different objects a good hash-function appears as if 
randomly generated: zero’s and one’s have probability 2

1 , independently of each other.
Count zero’s. The idea of LogLog-type algorithms is to sweep through objects keeping 
in the memory only the largest number of zero’s at the beginning hash functions. For 
example, if we observed

00101,  10011,  01010,
we will remember 2, the largest number of zeros. Roughly, the probability to see 2 
zero’s followed by one at the beginning of the hash function is

,2
1

2
1

2
1

8
1

$ $ =

so we conclude that we saw approximately 8 objects!
HyperLogLog. In this form, the estimation is obviously too rough, so it cannot be di-
rectly used in practice. A lot of mathematics went into making the result more precise. 
This includes dividing hash functions into registers, using different corrections for small 
and large samples, harmonic averages. All these ideas are included in HyperLogLog, 
ensuring its applicability. Further improvements are possible, e.g., this was the goal 
of the paper [15].
Why LogLog? Assume we have N objects. Then hash functions have length ( )log N2 . 
Hence, the number of zero’s is a number between 0 and ( )log N2 , so we need only 

( )log log N2 2  bits of memory to remember this number.
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to certain traits or treatment effects. Net-
work analysis is getting more and more at-
tention (see, e.g., [20] ) as a means to bring 
experimental results into the realm of the 
things we already know about the biology 
of the system — one of the main challenges 
is to combine the different omics data lay-
ers into coherent models that explain the 
behaviour of the system under study [14].

Precision farming
Agriculture is rapidly becoming a data-rich 
environment, tractors currently being con-
nected to the Internet 24/7 and resembling 
computers on (large) wheels rather than 
the dusty and primitive muscle-machines 
they were in the 20th century. As a result, 
new questions can be addressed that were 
unthinkable only ten, twenty years ago: 
by combining several different information 
sources (satellite images, plant growth 
models, management data on plot level) 
the farmer can, e.g., try to devise optimal 
strategies to deliver the right amount of 
water and nutrients to his land and in this 
way obtain the highest possible yield (see, 
e.g., [4, 10] and many others).

Here, the problems are the typical 
big-data problems: even assuming one has 
access to all databases and knows how to 
read and use the data, it is not a trivial 
question how to combine data with very 
different characteristics, found in different 
locations and measured for different pur-
poses. One thing is certain: mathematics 
and statistics play a pivotal role.

Genomics and other omics sciences
Now that technology has become avail-
able (and affordable!) to rapidly obtain in-
formation about the genetic composition 
of biological samples, huge quantities of 
data are generated routinely. This is not 
only true when looking at genetic informa-
tion (hence the term genomics) but also 
when looking at proteins (proteomics) and 
metabolites (metabolomics), to name just 
two other members of the ‘omics’ fami-
ly. The Big Data aspect here refers to the 
huge amount of information that we have 
on a relatively small number of subjects. A 
typical example is genetic information on 
humans, animals or plants that consists of 
millions of measurements (data points) for 
each subject. The resulting ‘high-dimen-
sional’ data require the development of 
new statistical techniques to draw correct 
conclusions because traditional statistical 
methods for such data lead to an unac-
ceptable high number of false positives 
(see, e.g., [7] ).

Furthermore, advanced data processing 
methods are needed to convert the mea-
sured data into information — one example 
is the BLAST algorithm [2], incidentally also 
the most highly cited paper of the nineties) 
to align sequences of nucleotides or amino 
acids with database entries. In each case 
we are confronted with the issue mentioned 
before: we know an awful lot about very few 
samples, which makes statistical analysis 
extremely hard. Typical questions are find-
ing genes, proteins or metabolites related 

the observed data onto a smaller sub-
space using sparsity in the data. Remark-
ably, random projections yield sampling 
strategies and reconstruction algorithms 
that outperform traditional signal process-
ing techniques. These methods are known 
under the name compressed sensing. For 
other applications of compressed sens-
ing in healthcare, we refer to https://www. 
healthcare.siemens.nl/magnetic-resonance- 
imaging/clinical-specialities/compressed- 
sensing.

Compressed sensing has been applied 
successfully in a wide range of other tasks 
as well, including network tomography, 
electron microscopy, and facial recognition.

Recommender systems
Webshops like Amazon analyze the buying 
behaviour of their customers and present 
visitors of the Amazon website with recom-
mendations of books and other items that 
may be of interest. In a similar way Netflix 
gives suggestions for movies to its custom-
ers. A way to provide such recommenda-
tions is to set up a matrix of user ratings 
of movies (columns are ratings, rows are 
users). Of course, such a matrix has many 
empty entries since there are many more 
movies (Netflix has around 20,000) than 
people can see and rate.

The idea behind the recommend-
er systems is that there are relatively 
few ‘latent’ features that drive our pref-
erences (a sparsity principle). That is, 
there are a few typical items (books or 
movies) and a few typical users. Trans-
lated into matrices, this means looking 
for a nonnegative matrix factorization of 
the preference matrix. This means that a 
very large and sparse preference matrix is 
presented as a product of two matrices 
with much lower dimensions. Although 
computers become faster, this is main-
ly increase in CPU speed and much less 
in faster memory. Factorizations of large 
matrices, however, require a huge amount 
of communication between working mem-
ory and storage memory. There is thus a 
need for memory efficient factorization 
algorithms that go far beyond traditional 
factorization algorithms for singular value 
decompositions (see, e.g., [16] ) for a tech-
nical account by the team that won the 
One Million Dollar Netflix competition). An 
exciting new approach in this field is the 
use of randomized methods like stochas-
tic gradient algorithms (see [1]). Figure 2 Smart agriculture.
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Institute of Mathematical Statistics presi-
dential address:

“Work on real problems, relevant theory 
will follow.”

(see http://bulletin.imstat.org/2014/10/ims- 
presidential-address-let-us-own-data-science). 
Hence the stress on the applications in this 
paper: mathematics needs them, just like 
the applications need mathematics. s

did not even expect to be solvable. It is 
important to realize that advances in this 
area have both a push and a pull com-
ponent: without being confronted with 
real-life problems we might lack the incen-
tive or the direction to pursue promising 
avenues, but without fundamental knowl-
edge we simply lack the tools to tackle the 
problems successfully. This was expressed 
in a concise way by Bin Yu in her 2014 

Conclusion
Mathematics and statistics, being extreme-
ly generic tools, have played an important 
part in technological and scientific develop- 
ments over the last centuries, and will con-
tinue to do so also in this Big Data era. Not 
only will they contribute to solving prob-
lems faster and more efficiently, they will 
expand our horizon, exposing questions 
that we never thought about and maybe 
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