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which proves that Cr
*  is algebraic over ( )tFq . 

Thus there must be a misprint in [18] in 
the definition of r, which is claimed to be 
transcendental.

Algebraicity in positive characteristics
It often happens in mathematics that slight
ly changing the formulation or the context 
of a possibly difficult problem leads to an
other problem which can be less difficult, 
or interesting, or both. It also can happen 
that the new problem does not throw any 
light on the one we started from. An ex
ample is to determine the transcendence 
(on the rationals) of a real number. How 
is this question modified if the numbers 
are written in base q and you perform ad
dition and multiplication without carries? 
To write things more formally, take q pa=  
a prime power, let Fq, [ ]tFq , ( )tFq , [[ ]]tFq

1- , 
and (( ))tFq

1-  denote respectively the field 
with q elements, the ring of polynomials 
over Fq, the field of rational functions with 

this misprint teased me and lead me to 
write the article [3].

More on the misprint
Let Fq the finite field with q pa=  elements. 
Let (( / ))t1Fq  be the field of Laurent se
ries in 1/t, i.e., the set of formal series 

n n$ a tn
n

0
-/  where an belongs to Fq. Let 

Cr
*  (C for Carlitz) denote the product r giv

en above. Expanding it as a formal series 
in 1/t, we see that Cr

*  is in (( / ))t1Fq . It 
is easy to prove that Cr

*  is algebraic over 
( )tFq  (note that ( / ) ( )t t1F Fq q= ). Name

ly, using the fact that the Frobenius map 
y yp"  is a morphism for addition and mul
tiplication, we have
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In 1988, a time where authors of papers 
received after publication ‘offprints’ or ‘re
prints’, i.e., bulk reproductions of their 
articles, I received a bunch of reprints of 
a paper at the Compte-Rendus de l’Aca-
démie des Sciences, about continued frac
tion expansions of algebraic formal power 
series in positive characteristic [2]. Among 
my reprints was, by mistake, a reprint of 
the article that followed my own article in 
the journal [18]. Its title, which I found in
triguing, was ‘Propriétés de transcendance 
des valeurs de la fonction zêta de Carlitz’. 
I looked at the paper, and was attracted by 
the following definition:
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and by the claim that this number is tran
scendental. M. Mendès France easily con
vinced me that this number is algebraic! 
I will describe how this extra reprint and 
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To prove that rC is transcendental, it suffic
es to prove that C

C
r
r*

 is transcendental, since 

Cr
*  is algebraic. Furthermore the expression 

above is transcendental if and only if the 
same expression where ( )t 1-  is replaced 
by t is transcendental. Now why bother with 

Cr
* ? Would it not be easier to introduce Cr

** 
defined by (compare with Cr

* )

?
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It is quite easy to prove that Cr
** is also 

algebraic, and that the quotient /C Cr r**  is 
equal to

t
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So that it is enough to prove the transcen
dence of the product P defined by
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The next remark is a combinatorial one: 
P can be expanded as
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where ( )a nq  is equal to 0 if n cannot be 
written as j J! ( )n q 1j= -/  for some fi
nite set of indices J, and ( ) ( )a n 1q

J= - D  if 
n can be written as j J! ( )n q 1j= -/  (such 
a decomposition is unique if it exists). 
Thus, using the Christol theorem, to prove 
that P is transcendental, it suffices to prove 
that the sequence ( ( ))a nq n 1$  is not qau
tomatic. Since the image of a qautomatic 
sequence is also qautomatic, it suffices to 
prove that the sequence ( ( ))b nq n 1$  is not 
qautomatic, where ( ) ( )b n a nq q= : in other 
words ( ( ))b nq n 1$  is the characteristic se
quence of the set of integers W defined by
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An unexpected coincidence
Once the interest of the set Wq above 
unveiled, I recognized W2 that Bétréma, 
Shallit and myself encountered in a quite 
different context [6]. Namely the von Neu
mann definition of integers (see, e.g., [14] ) 
introduces sets , , , ,A A An0 1 f f defined by
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An allusion to the Carlitz functions
After reading the extra reprint [18], I could 
not resist to (I had to) read the papers of 
Carlitz and of Wade, and to learn what was 
going on. Carlitz introduced analogs of the 
exponential function, of the logarithm, of 
the Riemann zeta function, and of r. The 
right definition of Carlitz’s r is actually
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Furthermore there is a mysterious rela
tion between rC, the Carlitz exponential 
function and the Carlitz zeta function that 
resembles the fact that i2 r is the period 
of the exponential function, while k2r  is a 
rational multiple of ( )k2g , where k is a pos
itive integer and g the Riemann zeta func
tion. Namely the period of the Carlitz expo
nential is equal to ( )t t /( )q q

C
1 1 r- - , while, 

letting for n a positive integer ( )nCg = 

[ ] PP t
1

monic F n
q!

/  denote the Carlitz zeta 
function, it can be proved that, for ( )|q n1- , 
( )nCg  is a rational multiple of Cr  (see [15], 

where Carlitz called p3 what is called rC 
here). The reader will have noted that the 
fact of being even for the integer argument 
of the Riemann zeta function ‘correspond
ing’ to the fact of being divisible by q 1-  
for the argument of the Carlitz zeta func
tion has something to do with the number 
of invertible elements of Z and of [ ]tFq : 
this can be used to complete Table 1.

A naive but fruitful approach
Comparing the ‘true’ value and the mis
printed value of rC made me think of a 
rather frequent approach of mathematical 
problems that I already alluded to above: 
if you do not really know how to solve a 
problem, find or invent a ‘similar’ problem 
and attack it. It might be the case that 
solving the latter helps to solve the for
mer. But it might also be the case that you 
can combine these ‘similar’ questions and 
obtain a new question which might shed 
some light on the initial question. Here, 
given the form of the quantities rC and Cr

*  
it is tempting to consider their quotient. An 
easy computation yields
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coefficients in Fq, the ring of formal power 
series in 1/t over Fq, i.e., the ring of formal 
power series n 0$ a tn

n-/  with coefficients 
in Fq and the usual rules for adding and 
multiplying formal power series on some 
field, and the field of Laurent series in 1/t, 
i.e., of Laurent series n n$ a tn

n
0

-/ . Then, 
we have the analogy with the real numbers 
shown in Table 1.

One of my interests, going back to the 
eighties, is the result of Christol [16] and of 
Christol, Kamae, Mendès France and Rauzy 
[17] that gives a combinatorial characteri
zation of the algebraic formal power series 
in positive characteristic.

Theorem 1 [16, 17]. Let ( )a Fn n q0
N!$ . Then 

the formal power series n 0$ a tn
n-/  is al-

gebraic over ( )tFq  if and only if the set 
of subsequences {( ) , ,a k 0q n r n 0k $$+  
[ , ]}r q0 1k! -  is finite.

A sequence ( )an n 0$  such that the set 
of its subsequences (called the qkernel 
of the sequence) {( ) , ,a k r0q n r n 0k $ !$+  
[ , ]}q0 1k -  is finite, is called a qautomat
ic sequence. For more on qautomatic se
quences, the reader can consult [7, 19, 21]. 
Contrarily to what is conjectured in the 
real case (typically that irrational algebraic 
numbers have a randomlike base 10 ex
pansion), Theorem 1 asserts that the coeffi
cients of an algebraic formal power series in 
positive characteristic have some regularity. 
It is thus very tempting to play with this 
theorem to try discovering transcendental 
‘simple’ formal power series. For example, 
I proved in [1] that the series ( )s n t n

2
2 -/  

is transcendental over ( )tF2 , where ( )s n2  is 
the sum modulo 2 of the binary digits of 
the integer n. But such series might be con
sidered as ad hoc in that they do not occur 
‘naturally’ in the literature, in particular in 
the literature published before 1979.

characteristic 0 positive characteristic 

Z [ ]tFq

Q ( )tFq

R
j

{algebraic (over Q) 
real numbers}

(( ))tFq
1-  

j
{algebraic (over ( )tFq ) 
Laurent power series}

Table 1
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litz zeta function, the quotient ( )/kC C
krg  is 

transcendental for [ , ]k q1 2! -  (see [10, 11] ). 
Actually the quantities ( )kCg  for any k 1$  
and ( )/kC C

krg  for any k not divisible by 
q 1-  are transcendental: this was proved 
by J. Yu in 1991 [34], using the deeper and 
more complicated theory of Drinfeld mod
ules. Several papers were then devoted to 
proving transcendence (or algebraicity) re
sults for functions à la Carlitz in positive 
characteristic (see, e.g., [5, 8, 9, 12, 13, 20, 
22, 23, 24, 26, 28, 30, 31]; also see the sur
vey [27] ).

At that time, I had (and I still have) a 
kind of dream, wishing that the various 
methods used to prove the transcendence 
of quantities à la Carlitz could be ‘unified’. 
There were four methods: the Wade meth
od, the criteria à la De Mathan, the ‘auto
matic method’, and last but not least the 
powerful Drinfeld modules. This wish was 
only partially realized: the first three meth
ods were (essentially) unified. The readers 
can consult the papers [20, 28, 32, 33]: they 
might then want to attack the question of 
unifying these three methods with Drinfeld 
modules ... s
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This was not the end of the story

A link between Cr  and the bracket series
In the same paper [3] we proved via Chris
tol’s theorem another transcendence result 
already proved by Wade in [29].

Theorem 2 (Wade). The bracket series 

kk
1

1$ 5 ?/  is transcendental over ( )tFq , 
where [ ]k t tqk

|= - .

Our proof was ‘simple’ in that it used only 
the Christol theorem and the fact that for 
any integer M 0>  there exist infinitely 
many primes congruent to 1 modulo M 
(recall that this last claim can be proved 
by elementary methods without using the 
whole Dirichlet theorem on primes in arith
metic progressions, see, e.g., [25] ).

It happens, as we noted later on in [3], 
that [ ]

'

kk
1

1C
C =

$r
r / , where 'Cr  is the deriv

ative of Cr  with respect to t. Since, as the 
reader can easily prove, the derivative of 
an algebraic formal power series is also al
gebraic, this gives that the transcendence 
of the bracket series implies the transcen
dence of Cr , yielding another simple proof 
of the transcendence of Cr .

More in this direction. A dream
A year later V. Berthé proved what the au
thor did not succeed in proving, namely 
that Christol’s theorem can be used to 
prove that, letting ( )kCg  denote the Car

Replacing 4 with {}, we get

{},

{{}},

{{},{{}}},

{ },

A

A

A

A A A

 

n n n

0

1

2

1 ,

h

h

=

=

=

=+

Hence, replacing the braces { with a and 
} with b, and suppressing the comma we 
obtain

,

,
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A a a b a a b b b
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one can prove that the same sequence 
of ‘words’ on { , }a b , up to the final b can 
be obtained by iterating the morphism of 
monoid a aab" , b b" : start from a, and at 
each step replace simultaneously each a 
with aab and each b with b, so that, start
ing from a, yields

,

,
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a

a a b

a a b a a b b

h

The characteristic function of the indices 
of a’s, namely the characteristic function 
of the sequence is nothing but ( ( ))b n n2 1$ , 
the characteristic function of the set

k 0${ ,
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n n
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2 1

0 1
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We proved in [6] that the sequence 
( ( ))b n n2 1$  is not 2automatic by using an 
idea of Shallit consisting of looking at the 
sequences  ( ( ))b n k2 2k k

n2 0+ - $ , with k 2$ . 
Namely we proved that ( )b n k2 2 0k k

2 + - =
for [ , ]n 0 2 3k! -  and ( )b n k2 2 1k k

2 + - =  
for n 2 2k= - . This implies that all the se
quences ( ( ))b n k2 2k k

n2 0+ - $  are distinct, 
thus providing an infinite set of subse
quences of b2 of the form ( ( ))b n j2k

n2 0+ $  
with [ , )j 0 2 1k! - . Hence b2 is not 2auto
matic since its 2kernel is infinite, which 
implies that P is not algebraic using The
orem 1.

The proof for bq is ‘essentially’ the same 
in that it ‘suffices to make q2 = ’ (which is 
of course more difficult than to make q 2= ), 
i.e., to try to generalize the proof for q 2=  
by guessing what the right generalization 
of each step might be.

Jean-Paul Allouche (right) with Jia-Yan Yao (left) 
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