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creates complicated and strong dependen-
cies in the data.

More broadly, the feedback between 
data analysis and acquisition is key in the 
scientific discovery method, a process of 
complex interactions between experiments 
and outcomes, guided mostly by the scien-
tists intuition. There have been a few at-
tempts to semi-automate such processes, 
notably the efforts reported in [17], where 
a large team of scientists developed a ro-
bot capable of autonomously conducting 
experiments and test hypothesis leading to 
the discovery of novel genomic knowledge 
in yeast cells.

The goal of this paper is to give a small 
overview of recent results pertaining infer-
ence of signals living in high dimensional 
spaces, as well as an idea of the methods 
and techniques used in the development 
of the analysis and algorithms. Although 
these results pertain only a certain class 
of settings and problems many of the sur-
rounding methods and ideas are extremely 
useful in a broader sense.

A sparse signal model
In this paper we survey some recent re-
sults pertaining inference of signals living 

experiment can be chosen sequentially, 
shaped by the answers/outcomes of the 
previous queries, much more powerful data 
collection and inference approaches can be 
used. Depending on the research area this 
sensing paradigm is known by different 
names: sequential experimental design in 
the statistics and economics literature, ac-
tive learning [2, 7, 15] or adaptive sensing/
sampling in computer science, engineering 
and machine learning and statistics. An es-
sential aspect of adaptive sensing is the 
intricate coupling between data analysis 
and acquisition, which creates a powerful 
feedback structure. This is a double-edged 
sword: it is key to harness the power of 
sequential experimental design but also 
makes the analysis and design of these 
procedures rather challenging — indeed it 

At large, the goal of any statistical learning 
and inference methodology is to uncover 
important aspects of a given process (e.g., 
physical, social or other) by collecting and 
analyzing data. Naturally, both the col-
lection and analysis of data are essential 
aspects of the methodology, and as such 
should not be considered separately. In all 
but few cases one can view the data col-
lection process as a ‘querying’ or experi-
menting procedure, where collected data 
are ‘answers’ or outcomes of multiple que-
ries/experiments, frequently corrupted in 
some fashion. 

Often there is significant flexibility in 
the choice of queries. If this choice must 
be made before any data is collected this 
corresponds to the classical experiment 
design scenario. However, if each query/
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above constraint is on the expected pre-
cision used. Alternatively, we can consid-
er a slightly more stringent constraint on 
the actual precision (i.e., mk k1 #C

3

=
/ ). 

The formulation in equation (1) consider-
ably simplifies the presentation, but does 
not qualitatively alter any of the results 
presented below. The reason is that, for 
most reasonable algorithms, control over 
the expected precision translates into con-
trol over the actual total precision in high 
probability by a concentration of measure 
argument.

This model might seem peculiar at 
first, as it allows for a scenario where one 
takes an infinite but countable number of 
measurements (provided the precision de-
cays sufficiently fast as a function of k). 
Nevertheless, this model fits closely sev-
eral practical situations, namely when the 
precision of measurements is proportional 
to the time it takes to collect a measure-
ment. In that case equation (1) is stating 
one has to take measurements during a 
time period with the duration of m units. 
A representative example of such a setting 
is in astronomical surveys, where long ex-
posure times are used to reduce the noise 
level. It is also possible to consider instead 
settings where there is little or no control 
over the precision (e.g., say k /C C for all 
{ , , }k 1 2 f! ). In that case the constraint in 

equation (1) simply states there is a max-
imum number of measurements that are 
allowed. This situation is closely related 
to what is encountered in stochastic multi-
armed bandits settings [3].

Allowing for arbitrary precision values 
has several advantages: it is a more gen-
eral measurement model, and allows for 
cleaner analytic results. Nevertheless, the 
entire methodology and analysis can still 
be done when considering fixed precision 
measurements and a constraint on the 
total number of measurements. When dis-
cussing inference of dynamically evolving 
signals in the section ‘Dynamically evolv-
ing signals’ we actually consider that situ-
ation instead.

The measurement model above is rather 
general, and allows for adaptive sensing 
approaches. Namely, one can adjust the 
way new measurements are collected based 
on measurements collected earlier. In other 
words, one can choose ,Ak kC  as a function 
of the past experiments { , , }Y Ai i i i

k
1
1C =
- . Fur-

thermore, this choice can also incorporate 
extra randomness, if desired. The collec-

in the non-adaptive sensing context and 
does not substantially hinder the general-
ity of the results presented in this man-
uscript. In particular, when characterizing 
the difficulty of the problem in terms of the 
minimum signal magnitude min xi i  the 
characterization we provide is essentially 
sharp. Throughout this paper we consider 
the sparse regime where S n%  (meaning 
S  is much smaller than n). More specifi-

cally we assume / ( )logS n n2# .

Measurement model 
Naturally, we do not have access to the 
signal x directly. Rather, we can collect only 
partial information through noisy measure-
ments of individual entries, or possible 
ensembles of the signal entries. The latter 
is often referred to as Compressive Sens-
ing (see [9, 12] and references therein). In 
this paper we focus primarily on the first 
model. This sensing model was introduced 
in [16]. We assume it is possible to collect 
measurements of each signal component 
corrupted by additive Gaussian noise. Con-
cretely let

, , , ,Y x W k 1 2/
k A k k

1 2
k

fC= + =-

where k denotes the measurement index 
(first measurement, second measurement, 
and so on), Ak denotes the entry of x being 
measured, kC  denotes the corresponding 
precision of the measurement, and Wk is 
a standard normal random variable em-
bodying measurement noise. Importantly, 
Wk are independent of { }Yi i

k
1
1
=
-  and also in-

dependent of { , }Ai i i
k
1C = . Said differently, 

each measurement corresponds to a single 
signal entry corrupted with additive Gauss-
ian noise. Both choices of which entry to 
measure and the corresponding noise level 
can be determined by experimenter — the 
higher the precision of a measurement, the 
lower the noise level. Note also that it is 
possible to measure the same signal com-
ponent multiple times, with independent 
noise realizations.

However, it is not possible to measure 
all the entries with arbitrarily large preci-
sion. In particularly, there is a total sensing 
budget constraint that must be satisfied, 
namely

,mE k
k 1

#C
3

=
^ h/ (1)

where m 0> . This means that it is not 
possible to measure all the signal entries 
with very high precision. Note that the 

in high dimensional spaces. These sig-
nals might be static, meaning they do not 
change during the measurement period, or 
dynamic, meaning they evolve while data is 
being collected. For simplicity, we consider 
first static signals. Concretely, the signal of 
interest is represented by an n-dimension-
al vector x Rn! , where n is called the ex-
trinsic signal dimension. Depending on the 
context, the entries of x might be used to 
represent different quantities. For instance, 
in gene expression studies, each entry of 
the signal vector is associated with a dif-
ferent gene, and the value of the signal 
is related to the corresponding expression 
level. Another compelling example pertains 
the monitoring of computer networks for 
detection and localization of anomalous 
behavior. In that case each entry of x might 
represent the activity level of each node in 
the network.

Although in principle the vector x can 
be arbitrary, in most cases it is sparse 
meaning most entries of x have nominal/
typical values, and only relatively few en-
tries have values deviating from that norm. 
Referring back to the two examples above 
most genes will be expressed to their 
nominal value, and only a few genes (e.g., 
about 100 out of 20.000 genes) will have 
a different expression level, for instance, 
due to the onset of a disease. In the case 
of network monitoring most nodes in the 
network will behave normally, and only a 
few nodes will have higher activity, for in-
stance, if those nodes are participating in a 
distributed denial-of-service attack.

To abstract this assumption let S be a 
subset of { , , }n1 f  of non-zero entries of x 
and assume that for all { , , }i n1 f!  such 
that i Sg  we have x 0i =  (the nominal 
value of each entry). We refer to S as the 
signal support and this is our main object 
of interest. We might want to estimate the 
signal support set, or simply detect if S 
is not the empty set, as we formalize be-
low. In the section ‘Dynamically evolving 
signals’ we consider also a modification of 
this model to allow signals to evolve over 
time.

To greatly simplify the presentation in 
this paper we consider only signals of the 
form

,
,

x
i S
i S0

if
ifi g

!n
= )

where 0>n  is called the signal amplitude. 
This restriction is also considered in [1, 11] 
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For symmetric classes there is no rea-
son to measure any signal component with 
more precision than any other. Therefore, if 
considering the non-adaptive sensing para-
digm, the only reasonable sensing strategy 
is to use uniform sensing. This means that 
we distribute our sensing budget uniformly 
over all the signal components. Further-
more, collecting more than one measure-
ment per signal entry is not necessary, due 
to statistical sufficiency. Therefore the opti-
mal non-adaptive sensing strategy consists 
of n measurements (one per signal com-
ponents), each with precision m/n. Said 
differently, we collect n independent mea-
surements ( , / )Y x n mNi i+ , { , , }i n1 f! .

Since this is an estimation problem it is 
sensible to consider a maximum likelihood 
approach. Namely, construct St by choosing 
the support set S that maximizes the likeli-
hood of the observations. It is not hard to 
show that this gives rise to the estimator

.argmaxS Ynon adaptive i
i SS C

=-
!!

t / (2)

When considering the class of all support 
sets of cardinality s this methodology sim-
ply deems the s largest observations as the 
support estimate. Naturally, to ensure the 
expected number of errors is small the sig-
nal magnitude n must be above the ‘noise 
floor’. In particular for an arbitrary 0>f , 
if ( ) logn1m

n2$n f+  then it is guaran-
teed that

[ ] ,max S S 0E non adaptive
S

S
C

"D-
!

t

as n"3. Conversely, if ( )logn1< m
n2n f-

such a methodology will necessarily fail. 
In fact, one can show that if log< m

cn
s
nn  

for c slightly smaller than 2
1 , then no meth-

od whatsoever will be able to reliably 
estimate the support. More generally it 
turns out that under mild conditions the 
cardinality of the class C is the main bot-
tleneck in regards estimation of the signal 
support. The following result character-
izes the limits of any support estimation 
procedure.

Proposition 1. (Proposition 10 of [8]) Suppose 
that C is symmetric, it only contains sets of 
size s and that ( ) ( )log1 2 1 2 1C# f+ - - , 
where C  denotes the cardinality of C. If

( ) (| | ),logsm
n1 2 2 1C#n f- -

then no non-adaptive procedure can satisfy

( ) .S SP ! # ft

Support estimation
As stated earlier, we focus mainly on two 
classes of inference problems — support 
estimation and signal detection. We start 
by addressing the problem of support esti-
mation, in which the goal is to identify the 
signal support S. In other words, one de-
sires to construct a set estimator St, based 
on the data , ,A Yk k k k 1C 3

=" ,  that is ‘close’ 
to the true signal support S. There are dif-
ferent ways to measure the closeness of 
these two sets. For concreteness we focus 
on number of errors, which is given by the 
cardinality of the symmetric set difference 

( \ ) ( \ )S S S S S S,D =t t t .
Let us assume S C! , where C is a given 

class of non-empty subsets of { , , }n1 f . For 
simplicity of presentation we assume that 
all the sets in C have the same cardinality 
s. A prototypical example is the class of all 
support sets with cardinality s (consisting 
of n

sa k sets). The goal of support set estima-
tion is therefore to construct a support set 
estimator , ,S S A Yk k k k 1/ C 3

=t t^ h" ,  such that 
worst case error

[ ]max S SES
S C

D
!

t

is small. In the above ES denotes the joint 
probability distribution of , ,A Yi i i i 1C 3

=" ,  for 
a given support set S.

For support estimation other metrics 
can be considered, such as ( )S SP !t  or 
False Discovery Rate (FDR) plus Non-Dis-
covery Rate (NDR). The first is very similar 
to what is described above while the sec-
ond metric is more lenient: we only try to 
make the number of errors relative to the 
size of St and S small. This means weaker 
signals can be reliably recovered. See for 
instance [5, 16].

Non-adaptive sensing
Provided the class C of possible support 
sets is somewhat symmetric, there is no a 
priori reason to measure any given signal 
component in detriment to another com-
ponent. The formal definition of symmetric 
classes is given below.

Definition 1. Let S C!  be drawn uniformly 
at random. If ( )i SP !  has the same value 
for all , ,i n1 f= , the class is said to be 
symmetric.

Equivalently, if { }i S1S C !
!

/  is not a 
function of i, the class is said to be sym-
metric. In the previous expression 1 de-
notes the usual indicator function.

tion of conditional distributions of ,Ak kC  
given { , , }Y Ai i i i

k
1
1C =
-  for all k is referred to 

as the sensing strategy. We can also con-
sider more traditional non-adaptive sens-
ing strategies. In that case the choice of 
sensing actions and corresponding preci-
sion must be made before collecting any 
data. Formally this means that { , }Ak k k NC !  
is statistically independent from { }Yk k N! . 
Note that a non-adaptive design can still 
be random.

The case m n=  is of particular interest, 
allowing for a simple direct comparison be-
tween adaptive and non-adaptive sensing 
methodologies. When m n=  we allow on 
average one unit of precision per each of 
the signal entries. So, if there is no reason 
to give preference to any particular entry of 
x, the natural optimal non-adaptive sens-
ing strategy should simply measure each 
entry of x exactly once, with precision one. 
This corresponds to the well studied nor-
mal means model.

Although we are considering measure-
ments with additive Gaussian noise, the 
methodologies used to study inference 
problems in this setting are easily extend-
ed to more general distributions (see for 
instance [20] ). Actually, the setting de-
scribed here is closely related to a class of 
problems known as stochastic multi-armed 
bandits (see [3] for an excellent survey). In 
North-American slang, a one-armed bandit 
is a casino slot-machine. In the stochastic 
multi-armed bandit setting one can imag-
ine a row of n slot machines. Each machine 
is endowed with an unknown probability 
distribution Fi with mean xi, { , , }i n1 f! . 
At each turn k the experimenter can choose 
a machine Ak to play, and will observe a 
‘reward’, nothing more than a sample of 
FAk

. Depending on the setting the exper-
imenter might have different goals. He/
she might want to maximize the total 
reward — this leads to an exploration/ex-
ploitation trade-off. Or instead they might 
want to identify the best-paying machine, 
leading to the so called pure-exploration 
problem. The latter is intimately related to 
the problem of signal detection described 
above, which has essentially the same 
statistical complexity as locating a single 
non-zero signal component. Actually, in [13] 
a methodology for proving lower bounds 
for the best-arm problem was developed, 
which is essentially the same methodol-
ogy developed earlier for the detection 
problem [5].
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[ ] ( ) ( )

( / ) ( ) .exp

S S i S i S

sT n s2 2 2

E P PS
i S i S

T2

g !

# n

D

C

= +

- + -

g!

-

t t t/ / (4)

Now all that we have left is to choose 
the parameters C and T such that equa-
tion (1) is satisfied and that the error is 
small, say smaller than a pre-determined 
level 0>f . Note that this is a balancing 
act: on one hand we would like to choose 
the precision C and the maximal number 
of measurements T large, so that the error 
becomes small, as shown by inequality (4). 
However, doing so increases the amount of 
precision used by the procedure, as shown 
by inequality (3).

Note that the second term on the right 
hand side of inequality (4) only involves T. 
Hence, if we want the error to be at most 
f than T has to be chosen to make that 
term strictly smaller than f, say /2f . This 
leads to the choice ( ( )/ )logT n s22 f= - . 
However, once we have T chosen, C is de-
termined by the need to satisfy the preci-
sion budget. In particular, using the choice 

n
m
3C =  with inequality (3) yields

( ) ( ( )/ )
.

log
m n

n s
n

s n s
3
2

3
2

E k
k

2#
f

C
-
+

-f cp m/

Note that the first term in the brackets 
above is at most 3

2 . The second term in the 
brackets is a function of n, s and f. How-
ever, we are considering scenarios where 
n is very large, and s is much smaller than 
n. In such cases, unless f is chosen to be 
extremely small, this term is at most 3

1 . 
Stated differently, for a given 0>f  and 
assuming /( ( ))logs n n2#  equation (1) is 
satisfied provided n is large enough.

The last piece of the puzzle is to figure 
out how large the signal strength n needs 
to be so that the error of the procedure 
above is at most f. We have seen that 
our choice of T ensures that we do not 
erroneously include zero components in St, 
but unless the signal is strong enough we 
cannot expect to correctly identify non-ze-
ro components. Formally, we see from in-
equality (4) that to ensure an error of at 
most f we need

( / ) .expsT
2 2 2

2 #n
f

C-

Rearranging the above, and plugging in 
values for T and C yields

( )
.log log logm

n s n s6 2
2$n f f+

-c m

the total number of measurements the pro-
cedure makes in expectation. The expecta-
tion of the total number of measurements 
is simply the sum of the expected number 
of measurements for each individual test. 
Note that there are ( )n s-  zero compo-
nents in x. In this case, the probability that 
we observe a negative value is 2

1 . Since we 
stop measuring a component once we see 
a negative value, the expected number of 
measurements in such cases is 2. On the 
other hand, the test never performs more 
than T measurements for any coordinate. 
Hence the expected precision used by the 
test can be upper bounded as

( ) .n s sT2E k
k

#C C - +f ^p h/ (3)

This can be used to determine the preci-
sion C of each measurement once we de-
termined the adequate choice for T.

The next step is to control the number 
of errors. Since the procedure tests each 
component independently, this means we 
only need to understand the probability of 
error for a single test. Consider the test of 
component i, where { , , }i n1 f! . In case 
x 0i = , an error is made if we observe T 
consecutive positive measurements. Since 
the probability of any one measurement 
being positive is 2

1 , the probability of mak-
ing an error (meaning i S! t ) is simply 2 T- .

In case xi n= , an error is made unless 
all measurements are positive. Let U de-
note the cumulative distribution function 
of a standard normal distribution (specif-
ically, if ( , )Z 0 1N+  is a standard normal 
random variable, then  ( ) ( )z Z zP #U = = 

e dt/tz

2
1 22

3 r
-

-
#  for z R! ). Denoting the 
(possible) measurements by , ,Y Y, ,i i T1 f  
we see that the error probability is upper 
bounded by

( { , , }: )

( )

( )

( / ),exp

j T Y

Y

T
T

1 0

0

2 2

<

<

P

P

,

,

i j

i j
j

T

1

2

7 f!

#

#

n

n

U C

C

= -

-

=
/

where ( , / ) { , , }Y j T1 1N,i j 6 f+ !n C , and 
we used a union bound and a standard 
bound for the tail of a Gaussian distri-
bution (for any z 0$  we have ( )z1 U- = 
( )z e /z

2
1 22#U - -  ). Putting all this together, 

we get that number of errors of the proce-
dure can be upper bounded as

Proposition 1 deals with a different error 
metric than the one we considered before. 
Note however that ( ) [| |]S S S SP E! # Dt t , 
hence the proposition also holds with 
( )S SP !t  replaced by [| |]S SE Dt  in the 

statement.
For the class of all sets of cardinality s we 

have ( / )n sC n
s

s.= c m , giving rise to the 
claim made earlier. In a nutshell, in order 
for non-adaptive sensing to be successful in 
recovering a sparse signal the signal mag-
nitude needs to scale roughly like lognm

n  
(since when s n% , log s

n  has the same scal-
ing as logn). If the class C has some struc-
ture (so the support sets are not arbitrary 
subsets of { , , }n1 f ) slightly better results 
can be obtained (see [8] and the subsection 
‘Structured support estimation’).

Adaptive sensing
Having established that it is not possi-
ble to recover the support of signals with 
non-adaptive sensing when magnitude of 
the active components is roughly smaller 
than lognm

n , a natural question to ask is 
if it is possible to do better with adaptive 
sensing. As the reader might expect, the 
answer is affirmative, and we describe next 
a simple approach and analysis demon-
strating this.

Consider a procedure in which we test 
each entry , { , , }x i n1i f!  independently 
to assess if these are zero or not. To per-
form the test, for entry i we take repeated 
measurements with the same precision C. 
If a negative measurement is collected we 
interpret that as evidence supporting the 
case that x 0i = ; hence we terminate the 
test and decide i Sg t. On the other hand, 
if we measure a component T times with-
out ever seeing a negative value, we inter-
pret it as evidence supporting x 0>i n= ; 
we terminate the test and decide i S! t.

Remarkably, this simple procedure per-
forms very well — in fact almost as well 
as the best possible procedure — as we 
illustrate in the analysis below. Note that 
we still need to specify the parameters C 
and T. A good choice will become apparent 
from the analysis.

To evaluate the performance of this 
method we need to do two things. On one 
hand we need to assess the error that this 
method incurs. On the other hand, we need 
to ensure the precision budget of equation 
(1) is not exceeded. We start with the latter.

Since all measurements are made with 
the same precision C, our task is to count 
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ticular, when m n=  adaptive procedures 
can identify the support of sparse signals 
whose strength scales as log s, whereas 
the weakest sparse signal any non-adap-
tive procedure can deal with needs to 
scale as logn. The gap between the per-
formance of adaptive and non-adaptive 
procedures can even be more dramatic, if 
the support of the signal is known to have 
some structural properties.

Assuming the signal support has some 
structure is a reasonable assumption in 
many applications. For instance, in gene 
expression studies one knows the expres-
sion levels of certain genes tend to be 
correlated, giving rise to interval-like struc-
tures in the gene-expression vector. In the 
same context, if one stacks the gene-ex-
pression levels of different individuals into 
a matrix, one expects to see that individ-
uals with the same phenotype (i.e. having 
the same medical condition) have similar 
genes expressed, giving rise to sub-matrix 
structures in the gene-expression matrix. 
As another example, while monitoring in-
fections on a network (be it a biological 
infection over a geographic region or the 
spreading of malware on a network of com-
puters) we may expect to see star-shaped 
patterns of anomalous behavior radiating 
from the point of origin of the infection.

Structural assumptions are naturally in-
corporated in the model by restricting the 
class C to contain only sets with specific 
structural properties. For instance, when 
thinking of interval structures in signal vec-
tors, we might restrict C to contain only 
sets that consist of s consecutive elements 
of the vector, instead of every possible set 
with cardinality s as done earlier. Similarly, 
if we would like to consider star-shaped ac-
tivations of size s in a network, we would 
simply restrict C to contain sets of size 
s corresponding to star-shaped patterns. 
More precisely, suppose there is a graph 
( , )G V E=  encoding our network, and we 

want to consider star-shaped edge activa-
tions in G. Then we simply construct a map 
: { , , }E n1" f}  that identifies each edge 

of the network with a number between 1 
and n. Then C consists of elements ( )Sz , 
where S is a star-shaped edge pattern in 
the network graph.

Under such assumptions, one might 
want to tailor their support estimation pro-
cedure to be more sensitive to such ac-
tivation patterns, hopefully being able to 
identify even weaker signals. For instance 

the adaptive and non-adaptive procedures 
for different values of the signal strength 
n. Theory tells us that the error of the 
adaptive procedure should drop below 
the value f when loglimit m

n s2|n n= = f . 
Hence we run the procedures for signal 
strength t limit$n n=  with values of t vary-
ing around 1. Our other parameter choices 
are ,n m n215= =  and s 24= . For each val-
ue of t we run both methods 100 times and 
plot their average error along with error 
bars whose total length is four times the 
(point-wise) standard error, which would 
correspond to a roughly %95  two-sided 
confidence interval for normally distrib-
uted measurements. Finally we note that 
instead of the simple procedure described 
in this manuscript, we use the somewhat 
more sophisticated test described in [8] 
that replaces the simple thresholding pro-
cedure with SLR tests, as described above. 
However, the results do not differ substan-
tially when using the simple thresholding 
procedure we described. As can be seen 
in Figure 1 adaptive sensing clearly outper-
forms non-adaptive sensing, for the same 
precision budget, as expected.

Structured support estimation
We have seen that adaptive support esti-
mation procedures have a marked advan-
tage over non-adaptive procedures. In par-

In other words we have shown that when-
ever the signal strength satisfies the pre-
vious inequality, the procedure described 
above has error at most f.

A few remarks are now in order. We first 
remark that the log logn term in the bound 
above is an artifact of the simple meth-
od we presented, and one can use a more 
refined procedure to eliminate it from the 
bound. The same is true for the constant 6 
in the bound, which can be improved to a 
value of 2. Actually, for each coordinate, the 
procedure described is essentially a poor-
man’s version of the celebrated Sequential 
Likelihood Ratio (SLR) test [24]. The latter 
is significantly more involved, but its per-
formance is qualitatively the same.

To summarize, there is a slightly more 
sophisticated procedure which can achieve 
error no larger than f provided that $n  
logm

n s2
f . Contrasting this with the 

non-adaptive bounds presented before, we 
see that we can improve the logn factor 
to a log s factor in the bounds for n us-
ing an adaptive procedure. In particular, 
this adaptive procedure is able to identify 
supports of signals that are so weak that 
doing so with any non-adaptive procedure 
is completely hopeless.

In Figure 1 we give a comparison of 
non-adaptive and adaptive sensing based 
on simulation. We plot the performance of 
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trast any non-adaptive procedure needs 
the signal magnitude to have order log s

n , 
which is dramatically higher and essential-
ly the same performance had we not taken 
structure into consideration. In summary, 
adaptive sensing is able to capitalize on 
structural assumptions to a much greater 
extent than non-adaptive sensing.

In the next section we encounter a sim-
ilar phenomenon, but in a different context 
— that of signals that change during the 
measurement period.

Dynamically evolving signals
In the previous sections we considered sit-
uations where the observed phenomenon 
did not change during the measurement 
process. However, in certain applications 
this assumption is not completely realistic. 
Consider for instance a signal intelligence 
setting where one wishes to detect covert 
communications. Suppose that our task is 
to survey a signal spectrum, a small frac-
tion of which may be used for communica-
tion, meaning that some frequencies would 
exhibit increased power. On one hand we 
do not know beforehand which frequencies 
are used, but also the other parties may 
change the frequencies they communicate 
through over time. This means we will be 
chasing a moving target. This introduces a 
further hindrance in our ability to detect 
whether someone is using the surveyed 
signal spectrum for covert communica-
tions. Other motivating examples for such 
a problem include spectrum scanning in a 
cognitive radio system [4, 18], detection of 
hot spots of a rapidly spreading disease 
[19, 22, 25, 26], detection of momentary as-
tronomical events [23] or intrusions into 
computer systems [14, 21].

Signal model
To investigate such settings we first need 
to develop a model that captures the dy-
namical nature of such signals. As a start, 
our aim is to create a model that resem-
bles the previous one as much as possible, 
so that we can clearly isolate the effect the 
dynamics has on the problem. Let x( )t  de-
note the signal at time t, where , ,t 1 2 f= . 
At each time step, the signal is of the form

,
,

x
i S
i S0

if
if

( )

( )i

t

tg

!n
= *

where S( )t  is the support of the signal 
at time t. The support is always a set of 

longer plays the crucial role in the perfor-
mance. A completely general characteriza-
tion of the performance of adaptive proce-
dures for structured classes is still missing, 
but we nevertheless have a general way to 
approach the problem.

A way to construct adaptive sensing 
procedures is to first consider the problem 
without observation noise. In such a case 
a reasonable approach is to first search 
across the signal vector until we find an 
element of the support. Once that hap-
pens, we can transition into an exploita-
tion phase to find ‘nearby’ elements of S, 
taking advantage of any local structure the 
support might have. Once the local struc-
ture has been exploited, the algorithm can 
revert back to the exploration phase to 
find another signal component, if there is 
a part of S that has not been found yet.

Once we have a method for noiseless 
observations, we can make it robust to 
noise by repeating each ‘noiseless obser-
vation’ with hypothesis tests to determine 
the identity of the component in question. 
These tests can be very similar to the one 
described previously, or simply SLR tests. 
In order to get a reliable procedure, the 
tests need to be properly calibrated — a 
full description of the approach is too in-
volved to be presented here, but it is fully 
outlined in [8].

As an example, consider a simple pro-
cedure for the case of interval activations. 
This procedure will consist of two phases. 
The first phase will be designed to find 
one component of the signal support S. 
We call this the exploration phase. Once a 
component of S has been found, we move 
on to the exploitation phase, in which we 
find the remaining elements of S by sam-
pling in the vicinity of the previously found 
component.

It can be shown that, for the class 
of intervals with s n< , such a proce-
dure has error smaller than f provided 

logs
s2 2$n f . Conversely, recovering the 

support is impossible for weaker signals. 
So, for the class of intervals adaptive 
sensing has a gain over adaptive sensing 
by replacing the factor logn by log s. 
This is relatively modest.

Now consider the class of star-shaped 
sets. In that case, one can show that an 
adaptive sensing procedure (very similar 
to the one above) has error smaller than 
f provided logs

s2 4$n f  (this result as-
sumes s slightly smaller than n ). In con-

we might imagine that we would scan the 
signal for activations of a specific structur-
al form only. The hope is that since we are 
considering only a restricted set of activa-
tion patterns, we might be able to ‘focus’ 
our attention better, resulting in improved 
performance.

Non-adaptive sensing. We can naturally 
adapt non-adaptive procedures to cope 
with structural assumptions. We are pri-
marily interested in situations where, a 
priori, no component of the signal is more 
likely to be active. This is formally stated 
as the assumption that the class C is sym-
metric, as in Definition 1. As discussed be-
fore, for symmetric classes there is no rea-
son to measure any signal component with 
more precision than any other. In other 
words, the optimal non-adaptive sensing 
scheme still measures every component 
once, with the same precision /m n, and 
the non-adaptive estimator also remains 
unchanged and is given by (2). However, 
in some situations the set C under consid-
eration is much smaller than before, which 
can benefit the performance of the estima-
tor, as illustrated by Proposition 1.

Considering the class of intervals of 
size s, the size of the class is C s

n.  and 
the bound becomes /log ss

n . This is a 
significant improvement over the case of 
unstructured supports. This arises from the 
fact that the class of intervals of size s is 
much smaller than the class of all supports 
of size s. Unfortunately, the possibility for 
improvement vanishes if the class under 
consideration contains too many sets, 
even if the sets themselves have con-
siderable structure to them. An example 
of this is the class of star-shaped activa-
tions in a network modeled by a complete 
graph. The number of star-shaped edge 
patterns in a complete graph ( , )G V E=  is 

( / )V n sC V
s

s1 .= -c m , since we have 
V  choices for the center of the star and 
V

s
1-c m choices for the edges, given the 

center. This results in the bound of the or-
der log s

n  which is the same as the bound 
for the unstructured case. In words, even 
though there is considerable structure to 
the sets in this class non-adaptive are not 
able to capitalize on that.

Adaptive sensing. In stark contrast with 
the above observations is the performance 
of adaptive sensing procedures. It turns 
out that the cardinality of the class C no 
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sampling an element of the support (un-
der the alternative). To illustrate, imagine 
a situation where there is no measurement 
noise. In this case, the reasonable thing to 
do would be to collect samples of random-
ly selected components, until we find one 
whose value is non-zero. This would be 
hard evidence for the alternative hypothe-
sis. If we sample for a long time, and never 
came across a non-zero entry, that would 
be evidence for the null. But how long is 
long enough? One can show that unless 
the number of measurements is of the or-
der n/s, there is no hope for any proce-
dure to reliably solve the signal detection 
problem, regardless of the signal strength 
n or the speed of change p. Because of 
this, we call the setting when /m n s.  the 
small sample regime and this is the setup 
we focus on for now. If we are interested 
in a situation where our goal is to make 
a decision as fast as possible, this is the 
setting to consider.

Overview of results
We would like to understand how non- 
adaptive and adaptive sensing methods 
fare in the signal detection task described 
above. Recall that in non-adaptive sensing, 
the decision which components to measure 
needs to be made before the sampling 
process begins. It turns out that, in the 
small sample regime, static and fast-mov-
ing signals are equally hard to detect. One 
can formalize a necessary condition for the 
signal strength that needs to be satisfied 
for any non-adaptive method to work. Due 
to technical difficulties, a formal proof is 
so far only available in the extreme cas-
es when p 0=  and p 1= . In both cases, 

tioned in the section ‘Measurement model’. 
Formally, the measurement model is

, , , ,Y x W t m1( )
t A

t
tt

f= + = (5)

where At denotes the component of x( )t  we 
measure at time t, and Wt is independent 
standard normal noise. Note that we are 
allowed to make a total of m measure-
ments, which is a direct analogue of the 
precision budget constraint of equation (1).

Since the signal support might be 
changing between time steps, it is not 
clear what we would mean by support es-
timation in this setting. However, there is a 
closely related question one often asks in 
the context of sparse signals, which is well- 
defined even for dynamically evolving sig-
nals — this is the task of signal detection. 
Recall that support estimation equates to 
identifying components of the signal that 
exhibit anomalous activity. A statistically 
easier question is whether there is any 
anomalous activity at all? This can be for-
malized as a test between two hypothe-
ses. Under the null, every component of 
the signal behaves nominally, or in other 
words S( )t 4/  for every , ,t m1 f= . Under 
the alternative, there is in fact anomalous 
activity in the signal, evolving according 
to the model described above. Our task is 
to decide which of these two hypotheses 
does our data support more.

Common sense tells us that unless we 
have enough time to monitor the system, 
there is no hope of reliably deciding be-
tween the two hypothesis, regardless of 
the signal strength n. The reason is sim-
ple: since the support is sparse, there 
is very little chance at any given time of 

cardinality s as before, but the identity of 
the elements of the support changes over 
time. To initialize, S( )1  is chosen uniformly 
at random among all sets of size s. For 
later times , ,t 2 3 f= , in order to get the 
support S( )t  from S( )t 1- , we flip a coin for 
each element of S( )t 1-  (a total of s flips). If 
the coin comes up heads, that element will 
also be included in S( )t . On the other hand, 
if the coin comes up tails, that element 
‘moves’ to a location chosen uniformly at 
random among the available locations (all 
those not corresponding to head-flips). 
The coins we flip comes up tails with prob-
ability p.

In this setup p dictates the speed of 
change of the signal. When p 0= , the coin 
always comes up heads, and thus com-
ponents never move, or in other words 
S S( ) ( )t t 1= +  for all times t. In other words, 
the case p 0=  is the same as the unstruc-
tured model of the previous section. On 
the other extreme, when p 1=  the coin 
always comes up tails, therefore all com-
ponents of the support ‘move’ at each time 
step. That is to say, when p 1=  a new sig-
nal support is drawn uniformly at random 
at each time step. This dynamics are illus-
trated in Figure 2.

Measurement model and inference goal
As before, the signal cannot be observed 
directly, only through some sort of noisy 
measurement mechanism. We consider the 
same measurement model as before, but 
with the constraint that the precision of 
each measurement is 1. This is aligned with 
the view that the precision of a measure-
ment is proportional to the time it takes to 
collect that measurement, as already men-
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presented in the previous section. As men-
tioned above, the error of the adaptive 
sensing procedure should drop below the 
value f when the signal strength is around 

logp4limit s
nn =  (the constant 4 comes 

from the detailed computations in [10] ). 
Therefore we run both adaptive and 
non-adaptive tests in situations when the 
signal strength is t limit$ n  with different val-
ues of t (around 1).

We run both procedures 100 times 
for every setting of t, and plot the aver-
age errors along with error bars in Fig-
ure 3. The error bars are constructed the 
same way as in the previous section. Our 
choice for the remaining problem param-
eters are ,n s2 215 4= =  as before, but 
now we consider the small sample regime 

( )logm s
n

2
2= f  (the details behind the exact 

choice of m can be found in [10] ). We run 
two different simulations, first when the 
speed of change p is equal to 0.2 and sec-
ond when it is equal to 0.5.

As expected, the adaptive sensing test 
outperforms the non-adaptive one. The 
margin by which the adaptive sensing test 
is superior is greater as p decreases, which 
is what the theory suggests. Note that the 
error probability of the tests never quite 
reach the value zero, since with this choice 
of m, the probability of being able to sam-
ple an active component is not overwhelm-
ing.

component is zero or not, the detection 
procedure is quite simple. Our strategy 
is to probe roughly s

n  components of the 
signal one after the other. When probing 
a component, we take repeated measure-
ments of it, and apply our sequential test 
to decide if that component is zero or not. 
If the sequential test is designed well, it 
will be able to make an accurate and quick 
decision. If the test deems a component 
non-zero, we stop sampling and decide 
that the alternative hypothesis is true. 
However, if all probed components are 
deemed zero by the test, we decide that 
the null is true.

It can be shown that this procedure re-
turns the correct decision with probabili-
ty 1$ f-  whenever the signal strength 
n scales as { , }max log logp s

n 1
f , where 

recall that p parametrizes the speed of 
change of the signal. That is to say, in the 
worst case when the signal is constantly 
changing (i.e. p 1= ), the performance of 
adaptive and non-adaptive procedures 
are the same, and there is nothing to be 
gained. However, the adaptive procedure 
does take advantage of situations when 
the signal only changes slowly. Remark-
ably, in the extreme case of static signals 
(p 0= ), the detection boundary no longer 
depends on n!

We illustrate these points by a simple 
numerical experiment, similar to the one 

the signal needs to be at least of order 
log s

n  for reliable detection to be possible 
by non-adaptive methods (see Theorem 4.1 
of [10] ). This shows that indeed static sig-
nals are as difficult to detect as constantly 
changing ones. Although a formal proof is 
missing, common sense leads one to be-
lieve that the detection boundary should 
follow the same scaling for p0 1< <  as 
well.

We now turn our attention to adaptive 
sensing methods. As before, our hope is 
that the flexibility in the sampling process 
would translate to improved performance 
over non-adaptive methods. In particular, 
perhaps there is a way to apply a simi-
lar strategy to the one we saw before, i.e. 
to quickly discard zero components and 
focus sensing effort on non-zero compo-
nents. Indeed this can be done, using a 
test with similarities to the one described 
earlier. Note, however, that we need also 
to take into account the signal is dynamic, 
which means that a non-zero component 
might move away while we are collecting 
samples of it. Therefore, we need to make 
our decisions fast, while also keeping 
our accuracy high. This can be achieved 
by subtle changes to the sequential test 
described earlier — we refer the interested 
reader to [10].

Once we have a test that can quick-
ly and reliably identify whether a signal 
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that scenario coordinate-wise measure-
ments are not informative, and one always 
needs to sample multiple components si-
multaneously to determine if they are cor-
related. In that setting adaptive sensing 
can be advantageous when there is sig-
nificant structure to the set of correlated 
components. However, it is an open ques-
tion if in unstructured cases there is still 
a significant advantage to using adaptive 
sensing techniques.	 s

sider linear ensembles — this is known as 
compressive sensing. Although technically 
more involved, similar results to the ones 
described here can be obtained in that set-
ting as well [9] (although some open ques-
tions remain).

A related problem to the detection/es-
timation of means is the detection of cor-
relations, where the aim is to determine 
whether there are correlated components 
within a high-dimensional vector [6]. In 

Final remarks
In this paper we hope to have given the 
reader an idea of the potential of adap-
tive sensing, as well as the methodol-
ogies required for the development of 
sound algorithms. As mentioned earlier, 
the signal and measurement models can 
be significantly extended, going beyond 
Gaussian noise and purely sparse signals. 
Furthermore, instead of considering coordi-
nate-wise measurements one can also con-
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