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lem has been solved but it is not known by 
whom.2 As will be made clear in the sec-
tion ‘Duality of (F) and (D)’, Torricelli’s ap-
proach already reveals that the problems 
(F) and (D) are dual to each other.

Our first aim is to show that application 
of duality in conic optimization yields the 
solution of (F), straightforwardly. Devel-
oped in the 1990s, the field of conic optimi-
zation (CO) is a generalization of the more 
well-known field of linear optimization (LO). 
Its main source is [1]. No prior knowledge of 
LO or CO is needed for reading the paper.

Problem (D) was posed in 1755 by 
T. Moss in the Ladies Diary [13], as shown in 
Figure 1. As this figure indicates, the prob-

We deal with two problems in planar geo-
metry. Both problems presuppose that 
three noncollinear points A, B and C are 
given:

(F) Find a point P minimizing the sum sP of 
the Euclidean distances from P to the 
vertices of ABC9 .

(D) Find an equilateral triangle T of max-
imum height hT, with the points A, B 
and C on different sides of T.

Fermat’s name is associated with various 
problems and theorems. Fermat posed 
problem (F) around 1640.1 In other litera-
ture (F) is often referred to as the 3-point 
Fermat Problem. For its long history we re-
fer to, e.g., [2, 3, 11].

Using a result of his student Viviani, Tor-
ricelli presented a geometrical construction 
of the Fermat point P, repeated below in 
the section ‘Solution of Fermat’s Problem’ 
and accompanied by his correctness proof 
in the section ‘Torricelli’s triangle’. Viviani’s 
result will be discussed in between those 
sections.
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of a convex optimization problem, namely 
a so-called conic optimization problem 0r 
a CO problem for short.

Every convex optimization problem has 
a dual problem. This is a maximization 
problem with the property that the objec-
tive value of any dual feasible solution is 
less than or equal to the objective value of 
any ‘primal’ feasible solution. This is the 
property called weak duality.

Finding a problem with this property can 
be a tedious task. For the class of CO prob-
lems there exists a simple recipe to get a 
dual problem. For the current purpose it is 
not necessary to go into further detail. It 
suffices to mention that the theory of CO 
yields the following dual problem of (2):
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To show that (2) and (3) considered togeth-
er exhibit the desired property of weak du-
ality, assume that x and the triple ( , , )y y y1 2 3  
are feasible for (2) and (3), respectively. 
We may then write
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The first inequality in (4) is due to the fact 
that y 1i #  for each i and the second in-
equality follows from the Cauchy–Schwarz 
inequality; the equality in (4) follows since 

y 0i i1

3
==

/ , whence also x y 0T
i i1

3
==

/ . 
This shows that we have weak duality.

This is all we need to reveal a property 
of the Fermat point that enabled Torricelli 
to geometrically construct this point in a 
very simple way. As will become clear in 
the next section the property in question 
follows by elementary means from (4).

Since (3) maximizes a linear function 
over a bounded and closed convex do-
main, an optimal solution certainly exists. 
This, by the way, is predicted by the duality 
theory for CO, which also guarantees that 
the optimal values of (2) and (3) are equal 
and attained.

Solution of Fermat’s problem
In this section we show that we have also 
strong duality, i.e., the optimal values of 

diately yield the correctness of Torricelli’s 
construction of the Fermat point.

Analytic approach to Fermat’s problem
Fermat’s problem as stated in (F) is a geo-
metric problem. To begin with we put it 
in analytic form. To each of the relevant 
points we associate a vector as follows:

, , , .x OP a OA a OB a OC1 2 3= = = =

Here we assume that the plane is equipped 
with a two-dimensional coordinate system, 
with origin O. Moreover, OP denotes the 
vector that goes from O to P. The distance 
from P to A is the length of the vector PA. 
Since OP PA OA+ =  we have PA a x1= - . 
Hence, the distance from P to A is just 
the Euclidean norm of the vector a x1 - . 
As a consequence, the sum of the dis-
tances from P to A, B and C is equal to 

a xii 1

3 -
=

/ . This function will be called 
our objective function. We need to mini-
mize this function when x runs through all 
vectors in R2. So (F) can be reformulated 
as the following optimization problem:

.min a x x R
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Each term in the above sum is nonnega-
tive, and since A, B and C are noncollinear, 
at most one of them can be zero. Hence, 
the objective function is positive for every 
x R2! . Furthermore, each term is strictly 
convex in x, as follows from the triangle in-
equality, and so will be their sum. We con-
clude that the objective function is strict-
ly convex and positive. This implies that 
problem (2) has a unique solution, which 
necessarily is the Fermat point of ABC9 .

Since the objective function is a sum of 
Euclidean norms of linear functions of x,  
and the domain is R2, (2) is a special case 

It turns out that two cases need be dis-
tinguished depending on the largest angle 
in the triangle ABC:

Case F1: the largest angle in ABC9  is less 
than 120°;
Case F2: the largest angle in ABC9  is at 
least 120°.

Our second aim is to show that in case F1 
the problems (F) and (D) are each others 
dual problem; the meaning of this sen-
tence will be made clear below. The corre-
sponding result can be stated as follows.

Theorem 1. Let X be any point of a triangle 
ABC of type F1 and T an equilateral trian-
gle such that A, B and C lie on different 
sides of T. Then one has

.h sT X# (1)

Equality holds if and only if X solves prob-
lem (F) and T solves (D).

The inequality (1) expresses so-called 
weak duality for problems (F) and (D), 
whereas the last statement in Theorem 1 
says that also strong duality holds. The 
proof of Theorem 1 will be given later.

As far as we know there does not exist 
a simple formula expressing sP in terms of 
the given points A, B and C. Such a formu-
la will be derived. It uses a simple geomet-
ric construction of Simpson that yields a 
line segment with length sP. We show that 
the sides of the so-called Napoleon’s out-
ward triangle of ABC9  have length /s 3P . 

In the next section we reformulate (F) 
as a conic optimization problem and in-
troduce its dual problem. As will be shown 
in the section thereafter, the optimality 
conditions for this pair of problems imme-

Figure 1 Original formulation of problem (D) in the Ladies Diary.
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generality we suppose that C 120> o+ c= . 
Now let Q be an arbitrary point in R2 differ-
ent from C. In Figure 2 Q lies inside ABC9 , 
but the argument below is also valid when 
Q lies outside the triangle or on its bound-
ary. With 180ob c= -  we turn the triangle 
CQA clockwise around the vertex C over 
the angle b. This yields a triangle ’ 'CQ A  
such that the vectors A’ C and CB point in 
the same direction and

, , .' ' ' 'CQ CQ AQ A Q CA CA= = =

Since ’Q CQ 60< o+ b= , the equal base 
angles in the isosceles triangle Q’ CQ ex-
ceed b, which implies 'CQ QQ> . By us-
ing this and ' 'AQ A Q=  we get

.' ' '

s QA QB QC

Q A QB QQ>
Q = + +

+ +

The last expression is the length of the 
polygonal path A’ Q’ QB, which is certainly 
larger than the length of the straight path 
A’ CB. Since 'A C AC=  we obtain

.s AC CB s>Q C+ =

Since this holds for any point Q in R2 dif-
ferent from C, it follows that C is the Fer-
mat point.

From now on we restrict ourselves to 
case F1. In that case neither xP nor sP is 
yet known; we only have proved (5). But, 
as observed by Torricelli 3, this proper-
ty already enables us to construct P. His 
surprisingly simple construction is demon-
strated in Figure 3. The circumcircles of 
the outward equilateral triangles on the 
sides AC and BC intersect at the Fer-
mat point, because the three angles be-
tween the dashed lines PA, PB and PC all 
equal 120°.

Torricelli also found a geometric proof 
that (5) must hold. We present this later. 
But first Viviani’s Theorem is presented.

Note that 0>im  for each i. The sum of 
these coefficients being 1, this means that 
xP is a convex combination of the vectors 
ai. Since each mi is positive, it follows that 
P lies in the interior of ABC9 .

Since the sum of the angles in the APC9  
is 180°, we have APC ACP PAC+ + ++ + =

.180o  Since APC 120o+ =  and PAC 0>+  we 
get ACP 60< o+ . In the same way we get 

BCP 60< o+ . Hence, C ACP BCP+ + += +
120< o. The same holds for A+  and B+ . 

We conclude that if x aP i!  for each i, we 
are in case F1.

It remains to deal with the case where 
x aP i=  for some i. Without loss of general-
ity we assume that this happens for i 3= . 
In that case the optimal value is simply 
given by a a a a3 1 3 2- + - . We next 
show that this happens only in case F2.

Since the points A, B and C are not col-
linear, we have x aP i!  for ,i 1 2! " ,. Hence, 
y1 and y2 are given by (7) and y y y3 1 2=- - . 
Dual feasibility requires y 13 # , which 
holds if and only if y y y y2 T

1
2

1 2 2
2+ +   

1# . Since y y 11 2= = , this holds if and 
only if cosy y 120T

1 2 2
1 o#- = . Therefore, 

APB 120o+ $ . Since x aP 3=  we have P C=  
and therefore also ACB 120o+ $ , proving 
that we are in case F2.

At this stage we may conclude that we 
have completely solved (F) in case F2: 
then the Fermat point is the vertex with the 
largest angle, and sP equals the sum of the 
distances of that vertex to the other two 
vertices. As is pointed out in [2] this case 
has either been overlooked or weakly treat-
ed in the early literature. It was explicitly 
stated for the first time by Bonaventura 
Cavalieri (1598–1647) [4, pp. 504–510]. A 
simple geometric proof of its solution had 
to wait until 1976 [17].

It is worthwhile to show Sokolowsky’s 
geometric proof for case F2. Without loss of 

(2) and (3) are equal. Using this we derive 
the main result of this section, namely that 
in case F1 the Fermat point P satisfies

.APB BPC CPA 120o+ + += = = (5)

As was established in the previous section, 
(2) has a (unique) optimal solution, denot-
ed by xP. We have strong duality if and 
only if there exists a dual feasible y such 
that we have equalities throughout in (4), 
with x xP= . This happens if and only if, 
for each i,

.
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Let us first consider the case where x aP i! , 
for each i. Then we have a x 0i P !-  for 
each i. The first equality in (6) then implies 

y 1i = , and then the second equality im-
plies

.y a x
a x

i
i P

i P= -
-

(7)

Thus, if xP is not one of the vertices of 
ABC9  we can conclude that (6) deter-

mines each of the vectors yi uniquely. We 
need still to verify whether these vectors 
are dual feasible. This holds if and only if 

y 0i i1

3
==

/ . Since y y y1 2 3+ =-  it follows 
that y y y 11 2 3+ = = . Since
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it follows that y yT
1 2 2

1=- . Hence, y1 and y2 
must make an angle of 120°. According to 
(7) the angle between the vectors y1 and y2 
is the same as the angle between the vec-
tors a x1 -  and a x2 - , which is the angle 
between PA and PB. Thus, APB 120o+ = . 
The same argument applies to any two of 
the vectors yi. So we may conclude that 
the Fermat point P satisfies (5).

The Fermat point must lie in the interior 
of ABC9 . This can now be shown by us-
ing y 0i i1

3
==

/  once more. This relation is 
equivalent to
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,x a a aP 1 1 2 2 3 3m m m= + + (8)
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Figure 2 Sokolowsky’s proof for case F2.
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have already seen how Torricelli construct-
ed a point P in ABC9  that satisfies (5). 
How did he know that the Fermat point has 
this property? 4

For that purpose he introduced another 
triangle whose sides contain the vertices A, 
B and C and are perpendicular to AP, BP 
and CP, respectively, with P such that the 
three angles at P are 120°. In this way he 
obtained the dashed triangle A1 B1 C1 in Fig-
ure 5, now called Torricelli’s triangle. Since 

CPB+  is 120° and PCA PBA 901 1
o+ = =  

we have A 360 120 2 90 601
o o o o#+ = - - = . 

For similar reasons also B C 601 1
o+ += = . 

Hence, A B C1 1 19  is equilateral.
By the construction of Torricelli’s triangle 

the sum of the distances of P to its sides 
is equal to | | | | | |PA PB PC+ + , which is sP. 
By Viviani’s Theorem this sum is equal to 
the height of Torricelli’s triangle, which we 
denote by h. Thus, s hP = .

Now let Q be any other point in ABC9 . 
Viviani’s Theorem tells us that the sum of 
the distances from Q to the sides of Torri-
celli’s triangle also equals h. The grey tri-
angles in Figure 5 make clear that this sum 
is less than or equal to | | | | | |QA QB QC+ + , 
which is sQ.  So we obtain s h sQ P$ = , 
proving that P minimizes the sum of the 
distances to A, B and C. It means that P 
solves (F), which implies that it is the Fer-
mat point.

Duality of (F) and (D)
Torricelli’s triangle can also be used to 
prove the duality relation between the 
problems (F) and (D), as described in 
Theorem 1. In order to prove this theorem 
we have also drawn another equilateral 
(dotted) triangle in Figure 6 such that the 
points A, B and C lie on different sides, as 
well as line segments from P orthogonal to 
the sides of this triangle.

quite similar to Fermat’s problem but much 
easier to solve, namely

(V) Find the point V that minimizes (or 
maximizes) the sum xV of the distances 
of V to the sides of ABC9 .

It will be convenient below to use the no-
tations

, , .a OA b OB c OC| | |= = =

Lemma 2. The minimal (or maximal) value 
of xV is attained at a vertex of ABC9 , and 
it equals the height of ABC9  seen from 
that vertex.

Proof. Let nA be a unit vector that is or-
thogonal to BC such that ( )n b a 0>A

T - . 
Then the distance to BC from any point 
X in ABC9  is equal to ( )n b xA

T - . Defining 
nB and nC in a similar way, the sum of the 
distances of X to the sides of ABC9  is 
given by

( ) ( ) ( ) ( ) .f x n b x n c x n a xA
T

B
T

C
T|= - + - + -

This function depends linearly on X. Hence, 
its minimal (or maximal) value is attained 
at a vertex of ABC9  and equals the dis-
tance of that vertex to the opposite side of 

ABC9 .  □

The height value of an equilateral tri-
angle seen from one of its vertices is in-
dependent of that vertex.  Hence, ( )f x  is 
constant on an equilateral triangle, which 
yields a second proof of Viviani’s Theorem.

Torricelli’s triangle
We now show how Torricelli used Viviani’s 
Theorem to solve Fermat’s problem. We 

Viviani’s Theorem
In this section we deal with a lemma due to 
Torricelli’s student Vincenzo Viviani (1622–
1703) [18] now known as Viviani’s Theorem. 

Lemma 1 (Viviani’s Theorem). If T is an equi- 
lateral triangle then for each point X in T 
the sum of its distances to the sides of T 
equals the altitude hT of T.

Proof. The proof is easy and demonstrated 
in Figure 4. The point X divides ABC9  into 
three triangles: AXB9 , BXC9  and CXA9 . 
Since the sum of their areas equals the 
area of ABC9  we get

.AB h BC h CA h AB h2
1

1 2
1

2 2
1

3 2
1+ + =

Since AB BC CA= = , this implies h = 
h h h1 2 3+ + , proving the lemma. □

It is worth noting that if X is on the 
boundary of T then one or two of the 
three triangles in the above proof reduce 
to a single point. But the argument used 
in the above proof remains valid. This also 
follows by considering a problem that is 

A B

C

X

hh1
h2

h3

Figure 4 Viviani’s Theorem: .h h h h1 2 3= + +

Figure 5 Torricelli’s proof of (5).

A B

C

P

Q

A1

B1

C1

A B

C A′

B′

P

Figure 3 Torricelli’s construction of the Fermat point in case F1.
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Formula for sP
Using the property of the Simpson lines 
just found, an expression of sP in terms of 

ABC9  is immediately at hand, simply by 
computing the length of the line segment 
AA’ in Figure 7. To compute the point A’ 
we use that it connects the mid point of 
BC by a line perpendicular to BC. Defining 

' 'a OA|= , we then have

( ) ,'a b c d2
1= + +

where d is a vector perpendicular to BC 
whose length equals the distance of A’ to 
BC. Since 'CBA9  is equilateral, this dis-
tance equals b c32

1 - . Moreover, the 
vector [ ; ]b c c b2 2 1 1- -  is orthogonal to BC 
and has length b c- . Hence,

.d
b c
c b32

1 2 2

1 1
!=

-
-

> H (10)

One easily understands that d is an out-
ward direction at ( )b c2

1 +  if ( )d b a 0>T -  
and an inward direction if ( )d b a 0<T - . It 
is worth to have a closer look at the quan-
tity ( )d b aT - . We may write

( )( ) ( )( )

,

det det det

det

b c
c b

b a
b a

b c b a c b b a

b a c b c a c b c a b a

c b c a b a

c b a
1 1 1

T
2 2

1 1

1 1

2 2

2 2 1 1 1 1 2 2

2 1 2 1 2 1 1 2 1 2 1 2

-
-

-
-

= - - + - -

=- - + + - +

= - +

=

>

6
=

>

6 6

H

@
G

H

@ @

where the last equality sign follows by 
evaluating the determinant det

c b a
1 1 1= G to 

its first row. The absolute value of this 
determinant equals two times the area of 

ABC9 . In the sequel we assume that the 
determinant is positive; if this is not so, 
interchanging the names of two vertices 
will make it positive. As a consequence d 
will be an outward direction at ( )b c2

1 + . 
So we must use the plus sign in (10). This 
gives

( ) .'a b c
b c
c b32

1
2
1 2 2

1 1
= + +

-
-

> H (11)

As before, we use |AB| to denote the length 
of line segment AB. So | |AB a b= - .

We also use |ABC| to denote the area 
of ABC9 .

Lemma 3. In case F1 one has

(| | | | | | ) | | .s AB BC CA ABC2 3P 2
1 2 2 2= + + +

(12)

ing F1 and its Fermat point P. So the three 
angles at P are all equal to 120°.

We turn BPC9  over 60 degrees clock-
wise around B, yielding ' 'BP A9 , as shown 
in Figure 7. Then 'BCA9  is isosceles. 
Since 'CBA+  is 60 degrees it is even 
equilateral. The same argument yields 
that also 'BPP9  is equilateral. Hence, all 
corners in both triangles are 60°. Since 

APB 120o+ =  it follows that 'APP 180o+ = . 
This proves that APP’ is a straight line 
segment. The same argument yields 
that also PP’A’ is a straight line seg-
ment. It follows that APP’A’ is a straight 
line segment. The length of this segment 
equals

| | | | | | | | | | | | ,' ' 'AP PP P A AP BP CP+ + = + +

which is exactly sP, the sum of the distanc-
es of the Fermat point P to the points A, 
B and C.

The line AA’ is named a Simpson line.
It can be easily constructed by ruler and 
compass by first drawing the outward 
equilateral triangle BCA’. In the same way 
one may construct Simpson lines BB’ and 
CC’. The Simpson lines intersect at P. This 
construction of the Fermat point is due 
to Simpson 5 (1710–1761) [16]. Strangely 
enough Simpson did not observe that the 
lengths of the three Simpson lines are the 
same and equal to sP. This was first shown 
by Heinen [8].

As a byproduct of the fact that ’BPP9  
is equilateral we get 'BPP 60o+ = , which 
means that the Simpson line PA’ is the bi-
sector of BPC+  as was observed in [11]. 
This in turn implies that P is also the Fer-
mat point of ' ' 'A B C9 , because of (5). Note 
that | | | | | |' ' 'AA BB CC s3 P+ + =  implies

| | | | | | | |

| | | | .

' '

'

AP PA BP PB

CP PC s3 P

+ + +

+ + =

Hence, | | | | | |' ' 'PA PB PC s2 P+ + = , which is 
the sum of the distances from the Fermat 
point of ' ' 'A B C9  to its vertices.

Considering the grey triangles in the 
figure it becomes clear that the sum of 
the distances of P to the sides of the 
dotted triangle is less than the sum of 
the distances of P to the sides of Torri-
celli’s triangle. By Viviani’s Theorem these 
sums are equal to the heights of the re-
spective triangles. The dotted triangle’s 
height is therefore less than the height of 
the Torricelli triangle. Since the height of 
Torricelli’s triangle equals sP, this proves 
Theorem 1.

Note that the above proof also makes 
clear that Torricelli’s triangle for ABC9  
solves problem (D). So, when Torricelli 
was solving Fermat’s problem, i.e., prob-
lem (F), he also solved problem (D), al-
though most likely being unaware of this. 
This is typical for problems that are each 
others dual. At first sight they seem to 
be unrelated — though both are based 
on the same input data, but when solv-
ing one of the two problems usually one 
gets enough information to also solve the 
other problem. Harold W. Kuhn [12] states: 
“Until further evidence is discovered this 
must stand as the first instance of duali-
ty in nonlinear programming” as was es-
tablished in 1811–1812 by M. Vecten, pro-
fessor of mathématiques spéciale at the 
Lycée de Nismes.

In the next section we discuss another 
method to construct the Fermat point. This 
method will enable us to find a expression 
for sP in terms of the given ABC9 . This will 
be done in the section thereafter.

Simpson lines
To introduce Simpson’s method we use Fig-
ure 7, which shows a triangle ABC satisfy-

A B

C

P

Figure 6 Torricelli’s triangle maximizes hT.

A B

C

P

P ′

A′

60o

60o

Figure 7 Simpson line AA’.
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Theorem 2. The triangles XYZ and X’Y’Z’ are equilateral. The cen-
tres of these triangles coincide with the centre of ABC. Moreover,

| |s XY3P =
and

| | | | | | | | | | ,' 'XY X Y AB BC CA2 2
3
1 2 2 2+ = + +_ i (13)

| | | | | | .XY X Y ABC2 2
3

4l l- = (14)

Proof. Let us define a OA= , x OX= , et cetera. Then ' 'a OA=  is 
given by (11). Since ( )'x b c a3

1= + +  it therefore follows that

( ) ( ) .x b c b c
b c
c b b c

b c
c b3 33

1
2
1

2
1 2 2

1 1
2
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The centre X’ of the inward equilateral triangle on side BC is ob-
tained by mirroring X in the line BC, which gives
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In the same way we get the following expressions for y, y’, z and z’:
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From   the   above   expressions   one   readily  obtains  x y z+ + =
' ' 'x y z a b c+ + = + + , which implies that the centres of XYZ, X’Y’Z’ 

and ABC coincide.
One has | |XY x y= -  and | |' 'X Y = ' 'x y- . We start by com-

puting x y- . We may write
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As a consequence we have
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Comparison of the last expression with the expression for sP
2  in (12) 

yields sP
2 = x y3 2- , which gives the value for XY  in the theo-

rem. Since the expression is invariant under cyclic permutations of 

Proof. From Section 7 we know that 's a aP = - . Therefore, 
's a aP

2 2 2= +  'a a2 T- . Since
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it follows that
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This gives the lemma. □

Surprisingly enough the formula for sP just found also appears 
when dealing with so-called Napoleon triangles. This will be the 
subject of the next section, where we find a line segment of length 

/s 3P .

Napoleon’s triangles
Figure 8 shows a triangle ABC and the three outward equilateral tri-
angles on its sides. The centres of the triangles BCA’, CAB’ and ABC’ 
are denoted by X, Y and Z, respectively. Napoleon’s Theorem 6 states 
that the triangle XYZ is equilateral. Moreover, the same holds for the 
triangle X’Y’Z’, where X’, Y’ and Z’ are the centres of the inward equi-
lateral triangles on the sides of ABC. The triangle XYZ is called the 
outward Napoleon triangle and X’Y’Z’ the inward Napoleon tri-
angle.

The first part of the next theorem is just Napoleon’s Theorem. 
Part of the second  statement is also known, namely that XYZ and 
X’Y’Z’ have the same centre [9].

A B

C
A′

C′

B′

X

Y

Z

X′

Y ′

Z′

Figure 8 Napoleon’s triangles.
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matical model for (D). This is remarkable 
and seems to deserve further investigation.

Different variants of Fermat’s original 
problem have been investigated by sever-
al authors. Among the more obvious ex-
tensions are weighted versions where the 
distances are multiplied by positive or neg-
ative weights associated with the vertices 
of ABC9  as in e.g. [7] and [9]. Other lines 
of research have focused upon the number 
of given points and/or the dimension of 
the space. For an overview the interested 
reader is referred to [3]. s
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The area of an equilateral triangle with 
side length s equals s4

3 2. Moreover, the 
area |ABC| of ABC9  is equal to det

c b a2
1 1 1 1= G. 

As a consequence of (14) we therefore get 
a surprisingly simple relation between the 
areas of Napoleon’s triangles and the area 
of ABC9 , namely (cf. [5] and [9]) | |ABC = 
| | | |' ' 'XYZ X Y Z- .

Concluding remarks
As was made clear the key to the solution 
of Fermat’s problem is property (5), which 
we obtained straightforwardly by using the 
conic dual of Fermat’s problem. It may be 
worth pointing out that at first (and sec-
ond!) sight there is no obvious relation 
between the ‘analytic’ dual (3) and the 
‘geometric’ dual (D) of Fermat’s problem. 
Whereas (2) easily is identified as a mathe-
matical model for Fermat’s problem (F), it 
seems harder to recognize (3) as a mathe-

a, b and c it follows that x y y z- = -
z x= - , which implies that XYZ9  is 

equilateral.
Now consider the triangle X’ Y’ Z’. We 

have
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The only difference with the expression for 
x y-  is the sign of the second term. It is 
easy to check that a similar derivation as 
for x y 2-  leads to

.

' '

det

x y a b b c c a

c b a
1 1 1

2
6
1 2 2 2

3
1

- = - + - + -

-

_ i

= G

From this and the expression for x y 2-  
we readily obtain (13) and (14). □

1 There seems to be uncertainty about the 
birth year of Fermat, see e.g. [11].

2 The Ladies’ Diary: or, Woman’s Almanack 
appeared annually in London from 1704 to 
1841 after which it was succeeded by The 
Lady’s and Gentleman’s Diary. It was a re-
spectable place to pose mathematical prob-
lems (brain teasers!) and sustain debate.

3 Torricelli was a famous French number theo-
rist, student of Galileo and discoverer of the 
barometer.

4 Some authors who ask this question leave 
it unanswered, suggesting that it was based 
on Torricelli’s intuition [3, p. 88; 7, p. 444].

5 Thomas Simpson (1710–1761) was an En-
glish mathematician. He taught mathematics 
at the Royal Military Academy and became 
known for the Simpson rule for numerical 
integration [6].

6 According to [11] and others, any connec-
tion between Napoleon’s Theorem and the 
French emperor is highly doubtful. It may 

amuse the reader to know that Napoleon’s 
Theorem is claimed to be one of the most 
often rediscovered results in triangular ge-
ometry. Thus, no less than 32 sources relat-
ed to it are mentioned in [19].
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