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Bayes factors
In null hypothesis significance testing (NHST) the objective is to 
decide between two competing hypotheses on some parameter 
of interest. These hypotheses can be simple (e.g. :H0 0i i= ) or 
composite (e.g. :H1 1!i H , with 0 1gi H ). Jerzy Neyman and Egon 
Pearson proved in 1933 that the likelihood ratio approach is uni-
formly most powerful when both hypothesis are simple, :H0 0i i=  
and :H1 1i i= , but the approach can also be used when the alter-
native hypothesis is composite. As the name suggests, the likeli-
hood ratio test looks at the ratio of the likelihood under the null 
distribution and the (maximum) likelihood under the alternative. 
When this ratio falls below a pre-specified threshold c, the null 
hypothesis is rejected in favour of the alternative. The likelihood 
function is given by ( ) ( ; )L f xi
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Example. Let , ,x x xn1 f=  be a random sample from the ( , )N 1n  dis-
tribution. Suppose we are interested in :H 00 n =  versus :H 11 !n . 
The likelihood function is given by 
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Under H1, this function is maximised when the maximum likelihood 
estimator xn =t r is used. The likelihood ratio can be simplified into
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Thus, when ( )n x 0n-r  is larger than a certain value, c<m  and the 
test will reject H0 in favour of H1. This frequentist notion of likeli-
hood ratios is turned into a Bayesian one by taking prior informa-
tion into account. Bayes’ Theorem dictates that
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Thus, the Bayes factor is the ratio of marginal likelihoods
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This special issue of Nieuw Archief voor Wiskunde is devoted to 
cryptography and it shouldn’t therefore be surprising that I devote 
my column to Alan Turing, probably the most well-known code 
breaker. Apart from playing a pivotal role in cryptography as well 
as being one of the founding fathers of computing science, Turing 
made some important contributions to the theory of Bayesian sta-
tistics.

About ten years ago, I was a research fellow at the Open Univer-
sity in Milton Keynes, England. My room was located in a building 
with the uninspiring name ‘M building’ and my fellowship was in 
the department of ‘Mathematics, Statistics and Computing’. Very 
few people made significant contributions to all three of these 
fields. Even fewer did that in the vicinity of (what is now) Milton 
Keynes. Only one person ticked both these boxes and saved mil-
lions of lives whilst doing so: Alan Turing. After I left the Open 
University, they renamed the M building after him (I don’t think 
these two events are related).

Turing is well known for his contributions to cryptography dur-
ing the Second World War, working with other scientists at Bletch-
ley Park and cracking the German Enigma machine. According to 
Churchill, their work caused the war to end years earlier, thus 
saving millions of lives. He’s one of the handful of mathematicians 
to have an Oscar-winning movie (The Imitation Game) based on his 
live. His work on the foundations of computing — most notably his 
papers describing what is now called the Turing Machine [6] and 
the Turing Test [7] — has been well documented. His contributions 
to statistics, however, are less well known, in part because this 
work consisted of classified documents.

During the war, Turing wrote two reports on probability and 
statistics [8, 9], but these remained classified by GCHQ until 2012, 
seventy years later. Both before and after the release of these 
documents in 2012, various scientists, including Turing’s direct col-
leagues Edward Simpson (from Simpson’s paradox) and Jack Good 
(known for his work on Bayesian analysis), have reflected on his 
work in statistics [1, 3, 5]. Two of the topics he worked on, Bayes 
factors and sequential analysis, have become standard equipment 
in the Bayesian statistician’s toolbox.
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and as such quantifies the evidence in the data for H0 relative to 
H1. When both H0 and H1 are simple, the Bayes factor approach is 
identical to the likelihood ratio approach. 

In contrast to the frequentist approach, the Bayesian approach 
is symmetrical: it can be used to reject H0 in favour of H1, but it 
can also be used to reject H1 in favour of H0. Furthermore, the abil-
ity to incorporate initial knowledge, or even initial guesstimates, 
through the prior odds, provide important benefits. Under mild 
conditions, the Bayesian alternative was easier to compute than 
the frequentist alternative, an important advantage in the era be-
fore modern computing. 

Bayes factors thus are a method to quantify the (relative) weight 
of evidence of two competing hypotheses. Together with Jack Good, 
Turing introduced the terminology ‘deciban’ for the units in which 
weight of evidence was measured. The base-10 logarithm of the 
Bayes Factor is measured in decibans. Turing and Good’s measure of 
evidence predates the, now more popular, ‘bit’ by Shannon and Tuk-
ey by about eight years. Bayes factors were already known shortly 
before the war [2], but according to Good [1], Jeffrey’s approach 
lacked the appealing terminology that Turing’s approach did have.

Sequential analysis
For Turing, the logarithms of the Bayes Factors were natural in-
gredients in the sequential analyses. In sequential analysis, the 
sample size is not fixed in advance: the data are evaluated contin-
uously as they are collected. In a frequentist context, derived by 
Abraham Wald [10], the usual approach after each new observation 
is to choose between three alternatives: (1) accept H0, (2) reject 
H0, (3) remain unsure and continue sampling. Deciding between 
(1), (2) or (3) occurs based on whether a certain likelihood ratio is 
either below c 1<1 , above c 1>2  or between c1 and c2.

Independently of Wald and his colleagues at Columbia Univer-
sity, Turing derived a Bayesian reasoning for sequential analysis. 
By taking the prior odds for observation k 1+  equal to the pos-
terior odds after observation k, and by applying Bayes Factors 
in each step, he derived a sequential process for updating his 
degrees of belief. This empirical Bayesian approach is now com-
mon within Bayesian statistical research. It has been shown that 
in many common situations this Bayesian approach coincides with 
Wald’s approach. Even though “Wald gave [sequential analysis] 
useful applications that were not anticipated by Turing” [1], Tu-
ring played an important role in the development of sequential 
analysis.

He used his sequential conditional probabilities in his work 
on Banburismus, an automated process to find the most likely 
settings of the German Enigma machine. This Banburismus was a 
predecessor of a modern day computing algorithm. In her popular 
scientific book, McGrayne [4] describes how this system enabled 
Turing to make a guess of a series of letters in an Enigma mes-
sage and then to measure his degree of belief in this guess. Sub
sequently, as additional information came in — e.g. in the form of 
additionally intercepted Enigma messages — the degree of belief 
would be updated and the initial guess would be replaced by a 
guess with a higher degree of belief.

Polymath
With the general public — and probably even within mathemati-
cians — Alan Turing is much better known for his other activities 
than for his statistical work. However, he deserves a place in a line 
of polymaths, statisticians that are also well known for contribu-
tions to other fields such as Ronald Fisher, Francis Galton and Karl 
Pearson. The impact of Turing’s statistical work has been underval-
ued, in part due to that many of his contributions were designated 
as classified information and not released until a couple of years 
ago. It is the task of the 21st century statistician to correct this 
omission in the recollection of 20th century statistics.	 s
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