
168 NAW 5/18 nr. 3 september 2017 Polymorphic encryption and pseudonymisation Eric Verheul, Bart Jacobs

2. Later on it can be decided who can de-
crypt the data, via some transformation
of the encrypted data (ciphtertext) which
makes it locally decryptable via local-
ly different (diversified) cryptographic
keys. This decision will be made on the
basis of a policy, in which the data sub-
ject should play a key role.

3. This transformation of encrypted data
can be performed by a trusted party
in a blind manner, without seeing the
content; the resulting transformed ci-
phertext is transformed into locally de-
cryptable ciphertext, for a specific other
party.

In an eID scheme the encrypted data can
be a national citizen identifier (like BSN)
stored at an authentication provider; it can
be decided later which government organ-
isation gets access to it, after a citizen’s
login request. In healthcare, a PEP-enabled
measurement device — operated by a doc-
tor or by a user himself — can immediately
encrypt the data; the user can decide later
that, for instance, doctors X, Y, Z may at
some stage decrypt and use the data in
their diagnosis, or medical research groups
A, B, C may use it for their investigations,
or third parties U, V, W may use it for ad-
ditional services, et cetera.

This PEP technology can provide the
necessary security and privacy infrastruc-
ture for big data analytics, where data
comes from various sources, like in the
internet of things. People can entrust their
data in polymorphically encrypted form,
and each time decide later to make (parts
of) it available (decipherable) for specific
parties, for specific analysis purposes. In

data from various sources. To avoid cum-
bersome bilateral exchanges, a central re-
pository is required. As in the eID case, pri-
vacy regulation mandates that these data
be stored in encrypted form. Hence also in
this case it would be desirable if the en-
crypted data (ciphertext) is transformable
to a form that is locally decipherable for
the different parties.

Both used cases gave rise to the de-
velopment of Polymorphic Encryption and
Pseudonymisation, abbreviated as PEP.
With the similar techniques of polymorphic
encryption and polymorphic pseudonymi-
sation new security and privacy guarantees
can be given which are essential in areas
such as privacy-friendly identity manage-
ment, (personalised) healthcare, medical
data collection via self-measurement apps,
and more generally in the internet of things
and in data analytics.

The key ideas of polymorphic encryp-
tion are:

1. Personal data can be encrypted in a
‘polymorphic’ manner and stored at a
central party in such a way that the cen-
tral storage facility cannot get access.
Crucially, there is no need to fix a priori
who can decrypt the data later, so that
the data can immediately be protected
at the source.

In 2014 the first author identified a paradox
in the foreseen Dutch eID scheme [3, 5].
This scheme allows citizens to authenticate
to governmental organisations through pri-
vate parties, like banks or telecom provid-
ers. For functional reasons, these parties
would need to provide a national citizen
identifier called ‘BSN’ to such governmen-
tal organisations. However, Dutch privacy
regulation precludes private parties from
processing the BSN. This led to the fol-
lowing question: is it possible to store the
BSN in some encrypted form at an authen-
tication provider such that it can later be
transformed into a form decipherable by,
and only by, the intended governmental
organisation? During transformation the
BSN should not temporarily emerge in the
clear at the authentication provider, so that
a common decrypt-encrypt transformation
would not be suitable. Also, in the end,
only the intended governmental organisa-
tion should be able to decrypt the BSN.
A solution to this problem was needed.
But the obvious approach to provide each
governmental organisation with the same
secret key for decryption would undermine
the required level of security.

The second author encountered a sim-
ilar challenge in healthcare and medical
research. Here, different parties (doctors,
researchers) wish to investigate patient

Polymorphic encryption and pseudonymisation
in identity management and medical research

Eric Verheul and Bart Jacobs are professors at the Digital Security Group at Radboud Uni-
versity, Nijmegen. Verheul is specialized in information security, and particularly interested
in online privacy and security management. Jacobs is specialized in software security, and
has made various contributions in the direction of privacy and identity management. This
paper sketches how the classical ElGamal public key encryption system can be used in a
novel way to provide new privacy protection mechanisms, notably in identity management
and in medical research.

Eric Verheul
Digital Security Group
Radboud University Nijmegen
eric.verheul@keycontrols.nl

Bart Jacobs
Digital Security Group
Radboud University Nijmegen
bart@cs.ru.nl

Eric Verheul, Bart Jacobs Polymorphic encryption and pseudonymisation NAW 5/18 nr. 3 september 2017 169

easier to formulate the results in Lemma 1
below. We do not use a special function or
notation for ElGamal decryption.

We now describe the three homomor-
phic properties of ElGamal that form the
basis of PEP. They are used in the oper-
ations of re-randomising, re-keying, and
re-shuffling that act on ciphertexts.

Lemma 1. In the notation introduced above
we define three functions , ,RR RK RS
each with type:

G F G*
q

3 3"#

and describe their properties.
(a) The re-randomisation of a triple

, ,B C Y G3!G H with s F *q! is defined
via the function:

(, , ,)

, , .

B C Y s

s G B s Y C Y

RR
def

$ $

G H

G H= + + (4)

If the input , ,B C YG H is an ElGamal ci-
phertext, then so is the output:

(, ,),

(, ,) .

R M Y s

s r M Y

RR EG

EG= +

^ h
(5)

This ciphertext decrypts to the original
message M via the original private key y.

(b) The re-keying with k F *q! is defined
via the function:

(, , ,)

, , ,

B C Y k

k B C k Y1

RK
def

$ $

G H

G H= (6)

where k
1 is the multiplicative inverse of

k in the field Fq. We then have:

((, ,),)

(, ,) .

r M Y k

k
r M k Y

RK EG

EG $= (7)

This ciphertext decrypts to the original
message M via a different private key
k y$.

(c) The re-shuffling with n F *q! is defined
as a function:

(, , ,)

, , .

B C Y n

n B n C Y

RS
def

$ $

G H

G H= (8)

Then:

((, ,),)

(, ,) .

r M Y n

n r n M Y

RS EG

EG $ $= (9)

Hence in this case we can decrypt with
the original private key to a re-shuffled
message n M$.

Proof. All results are obtained by easy cal-
culations. As an illustration we prove that

number n FR q! , then it is computationally
infeasible to find n in polynomial time in
()log q2 , i.e. in the number of bits in the

binary representation of q. A suitable in-
stance of G is the (largest prime order sub-
group of the) Montgomery Elliptic Curve
Curve25519 (see https://cr.yp.to/ecdh.html
for more information), offering 128 bits of
security, or the Brainpool320r1 curve (see
http://www.ecc-brainpool.org) offering 160
bits of security. The latter curve is current-
ly also used in European electronic pass-
ports, including the Dutch ones.

We recall the basics of ElGamal encryp-
tion.

Private key. The private key y of a user
is a random element in F *q , which is kept
secret by the owner.

Public key. The public key Y G! is the
group element Y y G G$!= . Due to the DL
problem, y cannot (feasibly) be obtained
from Y and G. This value Y is assumed to
be known to everyone.

Encryption. Let M G! be a message
that we wish to encrypt, with public key
Y. ElGamal encryption is ‘randomised’ or
‘probabilistic’: it uses randomness in each
encryption so that encrypting the same
message twice gives different ciphertexts,
with high probability. We choose a non-ze-
ro r FR q! and encrypt M as the pair of
group elements:

, .r G M r Y$ $G H+ (1)

We recall that a fresh (new) random num-
ber r should be used for each encryption.

Decryption. Let a ciphertext pair ,B C !G H
G G# be given corresponding to the pub-
lic key Y y G$= . The ElGamal decryption of
,B CG H is the group element:

.C y B$- (2)

(We use the letters B for blinding and C
for cipher.) One can easily verify correct-
ness, i.e. that decryption returns the orig-
inal message M. Security is based on the
DL problem.

Notation. We shall write EG for the El-
Gamal encryption function, but with a mi-
nor twist. We define:

(, ,) , , .r M Y r G M r Y YEG $ $G H= + (3)

As before r is the random number that
needs to be different each time. Notice
that the function EG produces a 3-tuple in
(3), instead of a 2-tuple in (1): its type is

F G G G G GEG q "| # # # # . This is pure-
ly for administrative reasons: it makes it

this way users remain in control, and can
monitor which parts of their data are used
where, by whom, and for which purposes.

The polymorphic encryption infrastruc-
ture can be supplemented with a pseu-
donymisation infrastructure which is also
polymorphic, and guarantees that each
individual will automatically have different
pseudonyms at different parties.

This paper provides an introduction to
Polymorphic Encryption and Pseudonymi-
sation (PEP), focusing on identity manage-
ment and healthcare as two application
areas.

The PEP framework is currently being
implemented in the Dutch eID scheme. The
framework is also elaborated into an open
design and open source (prototype) imple-
mentation at Radboud University in Nijme-
gen. The technology will be used and test-
ed in a real-life Parkinson research project
at the Radboud University Medical Center.

ElGamal revisited
The expression ‘ElGamal’ is used for one
of the first asymmetric, public key crypto
algorithms, named after its inventor [1]. It
can be used both for encryption and for
digital signatures. Here we only use the
encryption version. This section recalls
the basic definitions and results, assum-
ing familiarity only with elementary group
theory. In particular, it describes three op-
erations on ElGamal ciphertexts that form
the basis for PEP. Indeed, the PEP function-
ality exploits the ‘malleability’ of ElGamal
encryption, see Lemma 1 below.

ElGamal works in a cyclic group. In prac-
tice we shall use (prime order subgroups
of) elliptic curves [4] as groups, involv-
ing addition of points on a curve, and so
we prefer additive notation for a group
(, ,)0G G= + . Let G be a group of prime

order q and let G G! be a fixed genera-
tor. This means that q is the least non-zero
natural number with q G 0$ = and that each
element H G! can be written as H k G$=
for a unique { , , , }k q0 1 1f! - . The latter
set is the carrier of the field Fq of size q,
which is how we shall write it from now on.
With F *q we denote the non-zero elements
of the field, i.e. its multiplicative group. A
randomly selected element in a set is de-
noted by R! .

The security of ElGamal encryption de-
pends on the hardness of the discrete log-
arithm (DL) problem in the group. The DL
problem says: given n G G$! , for some

170 NAW 5/18 nr. 3 september 2017 Polymorphic encryption and pseudonymisation Eric Verheul, Bart Jacobs

provider can, after this intervention of the
transformer, decrypt the data.

We remark that the transformer should
also apply re-randomisation on either the
input or output of the transformation to
avoid linkability issues. Notice that the se-
curity of the system rests on having two
separate trusted parties, one holding the
master private key y, and one ‘transformer’
holding the key factors sj for each service
provider Sj. If these two trusted parties col-
lude, the system breaks down. Notice that
the transformer manipulates ciphertexts,
but cannot see the content. This is a very
powerful and useful feature that we will
further discuss in the upcoming sections.

Polymorphic pseudonymisation
In some cases service providers do not
only want access to personal data but also
want to have a persistent identifier related
to the person to which the data pertains.
That is, for the same person this identifi-
er is the same over all sources providing
data. In an identity management context
this could be a webshop that is not al-
lowed to process the BSN but needs a
persistent identifier to give clients access
to their own accounts. Different webshops
should get different identifiers for the
same client, so that they cannot combine
their records — simply based on the iden-
tifier. Researchers in a healthcare context
typically are not allowed to process the
BSN either, but need to be able to link
the data from various sources to the same
individual.

To facilitate these requirements PEP
supports service provider specific pseudo-
nyms that can accompany the data. To this
end, we assume that the data sources also
have access to a ‘global’ personal identifi-
cation number Id of the person to which it
relates. In a Dutch setting one can think of
(some hash of) the earlier mentioned BSN.

In the previous section we assumed
a master public key Y and a transform-
er which holds for each service provider
Sj a secret key factor sj. We now assume
that there exists another master public
key Z z G$= and that the transformer has
for each Sj secret key factors tj similar to
sj and additional ‘pseudonym’ factors uj.
Thus, these tj and z play the same role
as sj and y. All these factors sj, uj, tj are
random but fixed.

For the actual usage of these pseudo-
nyms, the transformer plays an important

Polymorphic encryption
From now on we assume that there is a
system-wide fixed group G with generator
G G! of prime order q. Also, some trusted
party has generated a master private key
y F *R q! , with corresponding public key
Y y G$= . The private y is securely stored,
for instance in a hardware security module
(HSM). It will not be used for decryption,
but only for generating other, derived pri-
vate keys.

Given certain (personal) data D, anyone
can form what we call the polymorphic en-
cryption of D, of the form:

(, ,) .r D Y rwhere FEG *
R q! (11)

This means that any data source can en-
crypt data, using the master public key Y,
and a self-chosen random number r. Our
aim is to transform this ciphertext in such
a way that dedicated parties can decrypt it.

We consider a collection of service pro-
viders Sj, for some finite index sets of j ’s.
In order to perform their services, they
need to get access to (parts of) the poly-
morphically encrypted data. In an identity
management context this could be a gov-
ernmental organisation and in an health-
care context this could be a doctor or a
medical researcher. Note that in the first
context a data source can polymorphically
encrypt any data and not only the BSN.

In our setup, there is for each service
provider Sj a secret number s F *j R q! that
is only known to a trusted party called the
transformer. The service provider obtains
a private key y F *j q! which has the form
y s yj j $= , where y is the master private
key, mentioned earlier. The corresponding
public key Yj of Sj is then equal to s Yj $,
where Y is the master public key. Indeed:

() () .y G s y G s y G s Y Yj j j j j$ $ $ $ $ $= = = =

Given some ciphertext , ,B C YG H arising as
in (11), the transformer can turn it into a
ciphertext that can be decrypted by a given
service provider Sj. This is done via re-key-
ing with the secret factor sj, as in:

(, , ,) , ,

, , .

B C Y s s
B C s Y

s
B c Y

RK j
j

j

j
j

$G H G H

G H

=

=

As we have seen in equation (7), via such
re-keying, any data D that is polymorphi-
cally encrypted with the master public key
Y, becomes encrypted with the public key
Yj of service provider Sj. Hence this service

equation (5) holds: re-randomisation (4)
on an ElGamal encryption yields a new
ElGamal encryption of the same message
with the same public key, but with random
number s r+ , since:

((, ,),)

(, , ,)

, ,

() , () ,

(, ,) .

r M Y s

r G r Y M Y s

s G r G s Y r Y M Y

s r G s r Y M Y

s r M Y

RR EG

RR

EG

(1)

(4)

$ $

$ $ $ $

$ $

G H

G H

G H

= +

= + + +

= + + +

= + □

The purpose of re-randomisation in the
first part of Lemma 1 is to create a copy of
an ElGamal encryption that is unlinkable
to the original. The obtained unlinkablity
is equivalent to a mathematical problem
called the Decision Diffie–Hellman prob-
lem in G which is believed to be hard
in the elliptic curve groups mentioned
earlier. This problem can be formulat-
ed as: given H GR! and the quadruple
(, , ,)G H a G b H$ $ for ,a b F *R q! decide if
a b= . Compare [2, Theorem 10.20]. Some-
times we shall combine the re-keying and
re-shuffling operations. The next result
tells that the order of such combinations
does not matter.

Lemma 2. The re-keying and re-shuffling
operations RK and RS from Lemma 1
commute. Explicitly:

((, , ,),)

((, , ,),) .

B C Y k n

B C Y n k

RS RK

RK RS

G H
G H=

Proof. This follows from an easy calcula-
tion:

((, , ,),)

(, , ,)

(), ,

(), ,

(, , ,)

((, , ,),) .

B C Y k n

k B C k Y n

n k B n C k Y

k n B n C k Y

n B n C Y k

B C Y n k

1

1

1

RS RK

RS

RK

RK RS

$ $

$ $ $ $

$ $ $ $

$ $

G H

G H

G H

G H

G H

G H

=

=

=

=

= □

Based on the above lemma we can
combine re-keying and re-shuffling into a
single function ()G F GRKS *

q
3 2 3"| # by:

(, , , ,)

, , .

B C Y k n

k
n B n C k Y

RKS

$ $ $

G H

G H= (10)

Eric Verheul, Bart Jacobs Polymorphic encryption and pseudonymisation NAW 5/18 nr. 3 september 2017 171

thentication providers know both the iden-
tities of citizens and the service providers
that they want to login to. There are many
cases where just registering that a user
accessed a specific service can constitute
a breach of privacy. Such cases include a
user retrieving his results of a medical test
or a user having an online psychiatric con-
sultation. This issue becomes even more
manifest if one is using private organisa-
tions that also provide other services. As
an illustration, suppose one is regularly
logging into an online consultation for al-
coholics through a bank acting as authen-
tication provider. How comfortable would
one then be to apply for a mortgage or a
car insurance application at that bank?

We note that privacy regulations man-
date that authentication providers need
user consent to send information to the
governmental organisation. So not supply-
ing the authentication provider with the
identity of the governmental organisation
is not suitable. In the projected Dutch eID
scheme [3] such ‘privacy hotspot’ issues
are procedurally mitigated: authentication
providers are required to separate their
registrations holding identifying user data,
e.g. name, address, et cetera, from regis-
trations holding usage data, i.e. authenti-
cation transactions. Note that the polymor-
phic setup conveniently caters for this as
authentication providers can store transac-
tions under a local pseudonym.

This lead to the question if this sep-
aration can be technically enforced: is it
possible that an authentication provider
authenticates a user for an organisation
without knowing the identity of the user?
This is paradoxical as the authentication
provider is required to identify the user and
to personally provide him with means of
authentication. This paradox can also be
solved through the polymorphic setup via
a personal PEP-enabled smart card. This
is actually being developed for the pub-
lic authentication provider (DigiD) in the
Dutch eID scheme. For this version of the
eID system the PI and PP are not (only)
stored by the authentication provider, but
also on a contactless Dutch identity card, or
driver’s license card (hereafter simply called
eID card). During authentication DigiD reads
the PI and PP from the eID card whereby
the card re-randomises these first. DigiD is
then able to do the transformation for a
governmental organisation but cannot de-
termine the identity of the citizen. Actually,

Although the embedded value should nev-
er be accessible outside BSN-l, the keyed
hash ensures that the BSN cannot be de-
rived from it. Both PI and PP are then sent
to the requesting authentication provider
and stored in a client database. A citizen
can register at multiple authentication
providers, for instance in order to have a
back-up authentication mechanism.

If registration was successful, the au-
thentication provider supplies the citizen
with a (strong) means of authentication,
linked to the PI/PP pair. This, for instance,
could be a smart card, a challenge/re-
sponse token or an authentication app
on a mobile device. If a citizen wants to
login to a web service, he is re-directed
to an authentication provider of his choos-
ing — where he has been registered al-
ready. By use of the authentication means,
the citizen can be linked to its PI/PP in
the client database of the authentication
provider. If the web service is allowed to
use the BSN, the authentication provider
then blindly turns the PI to an Encrypted
Identity holding the BSN using equation
(7). The Encrypted Identity is then sent to
the organisation who can decipher the BSN
from it. If the organization is not allowed
to use the BSN, the authentication provid-
er selects the PP and blindly turns this to
Encrypted Pseudonym via (10). This is then
sent to the organisation who can decipher
a local pseudonym from it.

Dutch governmental organisations are
allowed by law to use the BSN, but only
if strictly necessary. If a pseudonym suffic-
es, then that should be used. This is also
known as the data minimisation principle
stipulated in European privacy regulations.
Hence in the case of governmental organi-
sations there is a choice, namely to use the
Polymorphic Identity (PI) — for BSN — or
the Polymorphic Pseudonym (PP) — for a
pseudonym — at the authentication provid-
er. The status controller introduced below
is a first example of a governmental service
based on pseudonyms instead of BSNs.

To facilitate these transformations, the
authentication providers are given secret
factors sj, tj, uj by the government which
need to be stored in a hardware securi-
ty module. Notice that in the polymorphic
setup, authentication providers do not get
access to citizen BSNs solving the para-
dox from the introduction. Actually, the
polymorphic setup can also solve another
paradox. In the setup indicated above, au-

role again. Suppose service provider Sj
also wants access to a pseudonym relat-
ed to the person with identity Id. Then
the data source first embeds Id into the
group G through an (one-way) embedding
()I $. Then the data source polymorphical-

ly encrypts ()IdI using public key Z. This
results in the polymorphic pseudonym
(, (),)r Id ZEG I , and sends this together

with the index j to the transformer. The
transformer looks up the key factor tj and
the pseudonym factor uj for service provid-
er Sj, and performs both re-keying (with tj)
and re-shuffling with uj, written as RKS in
(10). This gives:

((, (),), ,)

(, (),)

(, (),) .

r Id Z t u

t
r u Id t Z

t
r u Id Z

RKS EG I

EG I

EG I

j j

j
j j

j
j j

$ $

$

=

=

The result is the encrypted local pseudo-
nym of the form ()u IdIj $, which can be
decrypted by Sj. Notice that the transform-
er learns nothing, except that someone is
accessing service provider Sj. Each time
this process is run, it produces the same
local pseudonym ()u IdIj $ at service pro-
vider Sj, and a different local pseudonym

()u IdIk $ at a different service provider Sk.
Pseudonym unlinkability is guaranteed
through the hardness of the Decision Diffie–
Hellman problem. As remarked earlier, the
transformer should apply re-randomisation
on either the input or output of the trans-
formation to avoid linkability issues.

PEP in the Dutch eID scheme
In the projected Dutch eID scheme a cen-
tral government organisation called BSN
Linking (BSN-l) plays the role of data
source discussed in the previous two sec-
tions. The transforming role is played by
(private) parties performing authentication
for the government. As part of user (citi-
zen) registration, authentication providers
provide BSN-l with information uniquely
identifying the citizen, e.g. first and last
name, date of birth et cetera. BSN-l then
looks up the citizen and its BSN. The
BSN-l forms both a Polymorphic Identity
(PI) and a Polymorphic Pseudonym (PP).
The PI is simply a polymorphic encryption
(, ,)r BSN YEG of the BSN. The Polymorphic

Pseudonym is a polymorphic encryption of
the form (, (),)s BSN YEG I . The embedded
BSN, i.e. ()BSNI , of the previous section
is based on a keyed hash function (HMAC).

172 NAW 5/18 nr. 3 september 2017 Polymorphic encryption and pseudonymisation Eric Verheul, Bart Jacobs

Apart from the basic functionality
sketched above, the PEP implementation
provides authentication and authorisation
for the various participants. The study
is open to other (international) research
groups. They will first have to submit a
research plan to a supervisory body, and,
after approval, will get the appropriate
(derived) cryptographic keys, in order to
access parts of the collected data that are
relevant for their research. In this set-up
they will also get their own (polymorphic)
pseudonyms for the patients involved.

Thus, the PEP infrastructure functions
as a secure database with encryption and
pseudonymisation. This sounds ideal, but
there are also some restrictions. We men-
tion the two most prominent ones.

1. It always remains possible to de-pseu-
donymise patients via the contents of
the data, especially with rare symp-
toms, or by combining the data with
other sources. PEP will not protect
against this. In the Parkinson study
such de-pseudonymisation is simply
forbidden by contract.

2. When data is stored in encrypted form,
searching in the stored data, in order to
select specific parts, is not possible.
(There are advanced cryptographic tech-
niques for searching in encrypted data,
but they have not been integrated (yet)
with PEP.) In principle, a researcher will
have to download all the data, decrypt
locally, and then search and select. This
problem is alleviated by storing the en-
crypted data together with unencrypt-
ed meta-data. These meta-data can be
used for selection, for instance based
on content or dates.

Once the PEP software is sufficiently tested
and stable, it will be made available as
open source. s

can itself compute such encryptions for
the data that it generates, since all that
is needed is the public key Y. As before, a
‘transformer’ can keep key factors for each
participating researcher or doctor, and re-
key the data so that it can be decrypted by
that particular party.

In addition, via polymorphic pseudo-
nyms it can be achieved that different re-
searchers receive different pseudonyms for
the same patient. This makes it hard to
combine data, for instance after data loss
or theft. Again, the pseudonymisation fac-
tors need to be associated with each par-
ticipating party, known by the transformer,
who can then re-shuffle and re-key in order
to form local, decryptable pseudonyms.

By also providing local database pseu-
donyms to the researchers in encrypted
form, researchers can put their findings
back into the database, so that it can
become visible for other participating re-
searchers. Use of re-randomisation of en-
crypted pseudonyms avoids linkability
issues. Even though these researchers all
have different polymorphic pseudonyms,
the enriched data that they put back will
end up with the right individuals.

The PEP technology will be used for the
first time in 2017 on a larger scale in a
medical research project on Parkinson’s dis-
ease (see http://www.parkinsonopmaat.nl),
set up jointly by the Radboud University
Medical Center and by Verily, the life sci-
ence branch of the Google group, now
called Alphabet. This study will involve 650
patients, who will be monitored for three
years. Verily will provide wearable devices
for this purpose. Radboud’s computer se-
curity group, to which the authors belong,
contributes with an implementation of the
PEP technology (see http://pep.cs.ru.nl for
more information; the PEP development is
funded by the province of Gelderland).

if the same citizen would authenticate one
second later, DigiD would not even be able
to determine this. This is due to the hard-
ness of the Diffie–Hellman Decision prob-
lem mentioned earlier. To determine if the
card has not been revoked, e.g. after loss
or theft, DigiD also uses the polymorphic
setup. DigiD forms an encrypted pseudo-
nym for a so-called status controller and re-
quests the status of the card by sending this
to the controller. The status of the card is
maintained by the issuer of the card which
is also provided an encrypted pseudonym
during production of the card. See also [5].

To allow his eID card to be read by Dig-
iD, the user needs to connect a contactless
card reader to his computer or to use a mo-
bile device (smartphone) supporting Near
Field Communication (NFC). The eID card
is heavily based on electronic passport
technology; in effect the PI/PP on the card
are protected as fingerprints on passports.
Through this technology it is also arranged
that the user is technically in control of
whether his card is providing both a PI and
a PP to DigiD or only a PP. This allows for
applications such as referenda where the
pseudonym enforces that a citizen can cast
his ballot only once but where BSN usage
would violate ballot secrecy.

PEP for medical research
The second application area for PEP that
we briefly elaborate on is medical research.
In addition to traditional ‘one-time’ medi-
cal data sources, like an ECG or MRI scan,
researchers nowadays like to have con-
tinuous, real-time access to patient data,
for instance via various wearable monitors
and activity trackers. This presents chal-
lenges for protected data management.

Via polymorphic encryption each data
item D can be stored securely at some
storage facility as (, ,)r D YEG . Each device

1 T. ElGamal, A Public Key Cryptosystem and
a Signature scheme Based on Discrete Log-
arithms, IEEE Transactions on Information
Theory 31(4) (1985), 469–472.

2 J. Katz and Y. Lindell, Introduction to Mod-
ern Cryptography, CRC Press, 2008.

3 Ministry of the Interior and Kingdom Rela-
tions, Uniforme Set van Eisen, version 1.0,
15-12-2016.

4 D. Hankerson, A. Menezes and S. Van-
stone, Guide to Elliptic Curve Cryptography,
Springer, 2004.

5 E. R. Verheul, The polymorphic eIDAS token,
Keesing Journal of Documents & Identity,
February 2017.

References

