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tiplying, adding and taking scalar multiples 
one recovers all of A). In case of Cn these 
elements are typically the unit vectors e iv  
for i n1 # # , and in the case of ( )M Cn  an 
easy example of a basis is provided by the 
elementary matrices Eij (having 1 on place 
( , )i j  and 0 elsewhere). Note that in these 
examples even more holds, because it is 
enough to take only linear combinations 
(i.e., only addition and scalar multiplica-
tion) of the elements , ,a an1 f , called basis 
elements, to reconstruct all of A. If such 
elements with this stronger property exist, 
A is said to be finite-dimensional over C.

Now we have some examples, we could 
go on and try to describe all possible alge-
bras over C up to isomorphism (say up to 
‘renaming symbols’). However, this is com-
pletely hopeless. The goal will rather be to 
describe the possible ‘rough shapes’, such 
as commutativity, of algebras. To make this 
more precise some definitions are needed. 
Recall that an algebra A is commutative if 
ab ba=  for all ,a b A! . Or put otherwise if 
and only if ( , )f a b 0=  for all ,a b A!  where 
( , ) [ , ]f x y x y xy yx|= = - . Such a polyno-

mial is called a polynomial identity of A. 
For instance Cn and [ , , ]x xC n1 f  satisfy this 
commutativity polynomial identity.

A first step into polynomial identities
Throughout this article, X will denote an 
infinite (countable) set of variables, say 

What is an algebra?
A set A is called an algebra over C if it is 
a vector space over C (i.e., one can add 
elements in A and do scalar multiplication 
with scalers from C), it is a (associative) 
ring with unit element (i.e., we can not only 
add but also multiply two elements from A 
in a compatible way which is expressed by 
distribution) and finally ab a b aba a a= =  
for all ,a b A!  and C!a .1 The latter prop-
erty simply express that also the both 
types of multiplication are compatible with 
each other. The easiest example is Cn, the 
n-dimensional complex space. A more en-
lightening example is the set consisting of 
the n n#  square matrices ( )M Cn  with en-
tries in C. Also [ , , ]x xC n1 f , the set of poly-
nomials in commutative variables , ,x xn1 f , 
is an example.

All the examples are instances of finitely 
generated algebras over C. This signifies 
that there exists a finite number of elements 
, ,a an1 f  such that , ,A a aC n1 fG H=  is gen-

erated as an algebra over C by the elements 
, ,a an1 f  (i.e., by starting with a finite num-

ber of elements , ,a an1 f  and by only mul-

There is an abundance of examples of 
functions that arise in our everyday lives 
and in nature such as cooking and tasting 
food, washing and drying clothes, going to 
left or right while driving, stock exchange, 
et cetera. Note that in the first three ex-
amples the order in which the actions 
take place matters. In other words these 
functions do not commute. Algebras can 
be used to model their behaviour. Another, 
more advanced, example is momentum and 
position of subatomic particles in quantum 
mechanics. By the fundamental equation 
of quantum mechanics they are related 
by PM MP i'- =  where ' is Planck’s con-
stant. In this case the algebraic model cor-
responding to this is the so called Weyl Al-
gebra which is generated by two variables 
x and y and satisfying xy yx 1- = .

As a starter we will explain more pre-
cisely what is an algebra. After that, we 
shall address such questions as “What is 
a polynomial identity?”, “What do they tell 
us?” and “Can we classify all algebras cor-
responding to a given set of polynomial 
identities?”
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The classification problem
We now have all the ingredients to refine 
our thoughts into the following problem:

“Classify all finitely generated algebras 
over C up to PI equivalence”

where we say that A is PI-equivalent to B 
if id( ) id( )A B= .7 By the explanations in 
the previous section we could equally ask 
to classify up to isomorphism all relatively 
free algebras.

So, in the above question, we do not 
take into account ‘small relations’ only re-
lating certain elements of A. In a way we 
try to describe the possible rough shapes 
delivered by polynomial identities to an 
algebra.

Let us reformulate the problem. First fix 
some set { }S f XCi ! G H=  of polynomials 
in non-commutative variables from the set 
X. Associated to it we can consider the set 

( ) { Alg id( )},S A S AV C! ; 3=

called the variety 8 corresponding to S, 
consisting of all algebras (over C) having 
at least all f Si !  as polynomial identities. 
For example if { }S xy yx= -  then ( )SV  is 
the set of all commutative algebras. Now, 
in other words, the goal is to describe 
( )SV  for all possible sets S.
How does one tackle such a problem? 

One way is to find a full list of invari-
ants distinguishing (and thus determin-
ing) all varieties. Unfortunately, this is 
(yet) completely out of reach. An invari-
ant is a number that one associates to 
any algebra (and variety) and which does 
not change under PI-equivalence.9 For  
example, the area of a triangle is an in-
variant with respect to isometries of the 
Euclidean plane. Also the determinant 
of a matrix associated to a certain linear 
map :V V"z  is invariant under change 
of basis of V. Moreover this invariant fits 
perfectly in our mindset. More precise-
ly, the determinant notices the difference 
between invertible linear maps (det 0! ) 
and non-invertible linear maps (det 0= ).

In our setting, with any algebra A 
(and variety) we associate a function 
( ) :c A N N"  which will turn out to look 

asymptotically (i.e., for n big enough) as 
the function ( )f n qn dt n= . The numbers t 
and d will be the invariants one is looking 
for. Moreover the numbers t and d will be 
(half )-integers and be connected (in a pre-
cise way) to the algebraic structure of A. 
Let us be more concrete.

are arbitrary polynomials in XC G H, then 
also ( , , ) id( )f g g An1 f ! . So polynomi-
al identities remain polynomial identities 
after eventual substitutions. In more so-
phisticated words, id( )A  is closed under 
endomorphisms End ( )XCC! G Hz . An ide-
al with this property is called a T-ideal. 
Now it is not hard to check that all T-ideals 
of XC G H are actually of this type. In fact, 
if I is a T-ideal, it is easily proved that 
id( / )X I IC G H = .5

The algebra /id( )X AC G H  is called a 
relatively free algebra.6 Our story is one 
about id( )A , but now we see that equiva-
lently, since there is a 1-1 correspondence, 
it is a story about understanding the dif-
ferent possible relatively free algebras 

/X IC G H  with I a T-ideal in XC G H.

{ }X x i Ni ; != . Further XC G H is the set 
consisting of all non-commutative polyno-
mials in the variables from X. This is an 
algebra over C for the usual addition and 
multiplication of polynomials.2

Definition. A non-zero polynomial  
( , , )f x x XCn1 f ! G H, in some non-commu-

tative indeterminates , ,x xn1 f , is called a  
polynomial identity of A if ( , , )f a a 0n1 f =  
for any ( , , )a a An

n
1 f ! , notation: f 0A/ . 

The set of all polynomial identities of A 
is denoted

id( ) { }.A f X f 0C A! ; /G H=

Such polynomials need not exist in gen-
eral (as is the case for the Weyl algebra 3). 
In many cases however, it does, and then 
A is called a PI algebra. To start, consider 

( )A M C2= , then ( , , ) [[ , ] , ]f x y z x y z 0A
2 /= . 

To see this we need the Cayley–Hamil-
ton theorem, which asserts that a ma-
trix satisfies its own characteristic equa-
tion. For a 2 2# -matrix C this equation 
has the form ( ) ( )Tr detx C x C 02 - + =  
where ( )Tr -  denotes the trace of a ma-
trix. Since ([ , ])Tr C C 01 2 =  for two matrices 
, ( )C C M C1 2 2!  and because ( )det A I2 is a 

scalar matrix (in particular it commutes 
with all the other matrices), we indeed get 
that [[ , ] , ]x y z2  is a polynomial identity of 
( )M C2 .
More generally, ( )A M Cn=  satisfies 

some polynomial identity, e.g. 

( ) ,sgnf x x
Sym

( ) ( )n n1 1 1
n

2

1

2

2

| gv=
!v

v v+ +
+

/

called the standard polynomial.4 As an im-
portant consequence any finite-dimension-
al algebra satisfies a polynomial identity. 
Indeed the regular representation, 

: ( ) : ( : : ),A GL A a A A b a ba" 7 " 7 $t t

embeds any finite-dimensional algebra 
into matrices of size ( )dim A . All this is to 
say that the class of PI-algebras is a large 
one.

Enriched structure of id A^ h
So PI theory is a story about algebras 
and their corresponding set of polyno-
mial identities id( )A . This set is actu-
ally a (two-sided) ideal of XC G H (i.e., if 
, id( )f g A! , then also f g+ , h f$  and f h$  

are in id( )A  for any id( )h A! ). Further it 
possess one more important property, 
namely if ( , , ) id( )f x x An1 f !  and , ,g gn1 f  

Specht’s problem and representability
Let A be a finitely generated algebra 
over C.

Specht’s problem. Do there exists poly-
nomials , , id( )f f Al1 f !  such that id( )A = 
( , , )f f idl T1 f -  is finitely generated as a 
T-ideal? a

This is a variant of Hilbert’s basis theo-
rem which gives an affirmative answer 
for the two-sided ideals of the commu-
tative polynomial ring.
It is important to add ‘as a T-ideal’, 
since otherwise the result do not hold, 
e.g. ( )I yx y n Nn ; !=  is a non-finitely 
generated ideal of ,x yC G H.
In his seminal work from 1991, Kemer 
proved Specht’s problem [15]. Actually 
he proved a stronger statement, called 
the representability theorem.

Representability theorem. Let A be a 
finitely generated algebra over a field 
F. Then there exists a finite-dimension-
al algebra B that is PI-equivalent to A. 
Moreover, , , /id( )F y y Am1 fG H  can be 
embedded in a matrix algebra ( )M Ln  
where L is a field extension of F.

Thus it is not possible to distinguish 
finitely generated algebras from finite 
dimensional ones solely using polyno-
mial identities. Also this will enable to 
assume A is finite-dimensional.

a	In the T-ideal also all substitutions into the 
fi are added.
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and computable algebraic formula relating 
d to the Wedderburn–Malcev decomposi-
tion of A (in case A is finite-dimensional). 
Philosophically, d relates how the ‘nice 
elements’ (i.e., semisimple) and the ‘bad 
elements’ (i.e., the Jacobson radical ( )J A ) 
in A interact with each other.

It is time for two small examples. 
First suppose A is abelian and thus 

id( )xy yx A!- . In this case d 1= . To prove 
this we must find a basis of 

( ) id( )
( )

Pn A
Pn
C
C
+

 as vec-
tor space over C. In this quotient space, one 
has x x x x 0i j j i- =  (and thus x x x xi j j i= ) 
for any variables xi and xj. Consequent-
ly, in this case span { }x xn1C( ) id( )

( )
Pn A

Pn
C
C g=
+

. 

Historically Regev introduced codimen-
sions and used above exponential bound 
in order to solve in the affirmative sense 
an (at that time) sixty years old conjecture 
asserting that the tensor product of two PI 
algebras is again PI.

At this stage of the story we can asso-
ciate to any PI algebra a sequence of num-
bers ( )c An  such that ( )limsup c An n

n
"3  

exists. But much more has to come.

Conjecture of Regev and Amitsur
Concerning the exact asymptotics of the 
codimension sequence of a finitely gener-
ated algebra, Regev conjectured at the end 
of the seventies the following.

Conjecture (Regev, 70’s). There exist num-
bers ,t dZ N2

1! !  and [ , ]c b2Q! r  for 
some b N!  such that

( )c A cn dn
t n-

where f g-  iff lim 1n g
f
="3 .

Historically one should mention an 
even earlier conjecture of Amitsur assert-
ing that the limit ( )limd c An n

n= "3  ex-
ists and is an integer. This number, which 
represents the exponential growth rate 
of ( ) : : ( )c A n c AN N n" 7 , is called the  
PI-exponent of A, denoted ( )exp A .

This integrality conjecture is very surpris-
ing if one thinks of other growth functions 
in algebra. As an illustration, one aspect 
of this conjecture is that the codimension 
sequence would (asymptotically) never be 
a function between a polynomial and an 
exponential function such as ( )f n e n= . 
This is in contrast to other growth func-
tions such as the word growth in group 
theory. Also the polynomial growth of the 
word growth function of a finitely gener-
ated algebra (which gives rise to the so 
called Gelfand–Kirillov dimension) can be 
any real value greater than 3. Thus the 
conjectures of Amitsur and Regev are really 
strong ones.

It was only in 1998, in their break-
through paper [6], that Giambruno and 
Zaicev proved that indeed 

( ) .limd c A N
n

n
n !=

"3

This is an amazing fact, but nevertheless 
one could wonder whether this number 
contains any useful information... The 
answer is yes! They proved the integrali-
ty by delivering a surprisingly transparent 

Asymptotics behind polynomial identities 
In order to describe an algebra up to 
PI-equivalence we have to completely de-
termine id( )A . Unfortunately, determining 
when an arbitrary polynomial is in id( )A  
can be very hard and painful. Luckily, in 
characteristic 0, it is enough to determine 
which multilinear polynomials are poly-
nomial identities. A polynomial is called 
multilinear if the power of each variable 
occurring is exactly one in each monomial. 
More formally,

( ) span { Sym }P X XC ( ) ( )n n n1C g ; !v= v v

is the set of all multilinear polynomials 
over C. Now let id( )f A! . Then it is pos-
sible, by a multilinearization process, to 
replace f by a set of multilinear polynomi-
als gi that are polynomial identities if and 
only if f is and such that f is in the T-ide-
al generated by the gi (e.g. if ( )f x x2= , 
then ( , ) ( ) ( ) ( )g x y f x y f x f y xy2= + - - =  
and ( ) ( , )f x g x x2

1= ). Thus if we know 
id( ) ( )A P Cn+  for all n, then we can also re-
construct whole of id( )A  and consequently 
the PI-equivalence class of A. Without real 
surprise, the story would have been too 
short otherwise, for only in very few cases 
generators for id( )A  and id( ) ( )A P Cn+  are 
known. Even for ( )M Cn  with n 3$  this is 
an open problem. Instead one could try 
to compute only id( ) ( )dim A P CnC +  for 
large n, which a priori is more tractable 
(but provides less information). Note that 

( ) | Sym | !dim P nCn nC = = . It turns out that 
for n big enough also id( ) ( )dim A P CnC +  
!n.  which is asymptotically a wild func-

tion.
In the light of all this, much research in 

the field of asymptotic PI-theory is focused 
on the sequence ( ( ))c An n, where 

( )
( ) id( )
( )

,dimc A
P A

P
C
C

n
n

n
C +

=

is called the n-th codimension of the 
algebra A. Notice that the function 
( ) : : ( )c A n c AN N n" 7  depends on id( )A  

rather then A, thus it is constant on 
PI-equivalence classes and can therefore 
be used as an invariant. Unfortunately de-
termining ( )c An  in any point is, even for 
concrete examples, out of reach. Neverthe-
less for large n it becomes tractable. The 
reason for this is the pioneering result of 
Regev who proved in 1972 that this func-
tion is exponentially bounded [16], i.e., 

: ( ) for all .d c A d nR n
n7 ! #

Wedderburn–Malcev decomposition
Representation theory aims to repre-
sent groups and algebras inside matrix 
algebras ( )M Cn  which we understand 
well from our first courses in linear 
algebra. These are, in a ring theoretic 
sense, simple and direct summands 
( ) ( )M MC Cn nl1
5 5g  are called semi

simple algebras.a Unfortunately in gen-
eral an algebra is not semisimple. One 
can collect all ‘bad elements’ due to 
which A fails to be semisimple. This set, 
which actually is an ideal, is called the 
Jacobson radical, denoted ( )J A .b 

Theorem (Wedderburn–Malcev). Let A 
be a finite-dimensional algebra over C. 
Then 

( )A B B J Al15 5 5g=

where Bi is a simple subalgebra (say 
( )B M Ci ni

, ), B Bl15 5g  a maximal 
semisimple subalgebra, ( )J A  is nilpo-
tent (i.e., there exists a number s N!  
such that ( )J A 0s = ) and 5 the direct 
sum of vector spaces.

Thus one can properly decompose the 
elements into a set of ‘nice elements’ 
(the semisimple part) and of ‘bad ele-
ments’ (the radical part).

a	To be more precise, an algebra A is se-
misimple if and only if it is a direct sum 
of minimal left ideals. By a theorem of 
Wedderburn–Artin semisimple C-algebras 
are isomorphic to a direct sum (of rings) 
( ) ( )M MC Cn nl1
5 5g .

b	Concretely ( )J A  is the intersection of all 
(left) maximal ideals. Moreover, ( )J A  is the 
smallest ideal I such that /A I is semisim-
ple.
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For this we start 
by distributing all 
varieties into lay-
ers according to 
their PI-exponent 
(see the figure). 
Let now S be a fixed set of polynomials, 
consider ( )SV  and suppose that its expo-
nential growth is d.11

It could be that by adding polynomials 
to S we get a strictly smaller variety (since 
not all algebras in ( )SV  have to satisfy 
this extra polynomial) with a strictly small-
er invariant d. If this always happens, ( )SV  
is called a minimal variety (intuitively in 
this case ( )SV  lies at ‘the bottom of the 
layer’). They have been classified in [8] 
and the answer surprisingly turns out to 
be very elegant. Namely:

Theorem (Giambruno–Zaicev). Let V be 
a variety with ( )exp 2V $ .12 Then V 
is a minimal variety if and only if there 
exists a upper block triangular matrix 
algebra ( , , )UT d d Vq1 f !  such that 

(id( ( , , ))UT d dV V q1 f= .

In a next step one tries to differentiate 
varieties in a fixed layer (i.e., we fix the 
invariant d). Again we can distribute them 
into smaller layers depending on the poly-
nomial growth, thus the invariant t. Inves-
tigations are being done into classifying 
the varieties minimal with respect to the 
invariant t with a fixed exponential growth 
d. There is evidence that again an elegant 
answer pops up.

Other and further research
At this point we have a beautiful story 
starting with a set of algebras sharing the 
same ‘rough shape’ (delivered by a com-
mon set of polynomial identities) to which 
we can associate two invariants (which ba-
sically are the exponential and polynomial 
growth rate of the so called codimension 
sequence) that delivers precise informa-
tion. Due to these we are able to differen-
tiate certain classes of algebras. But what 
next?

Two remarks can be made about the 
story. To begin with, by the representability 
theorem it is sufficient to consider finite-di-
mensional algebras. The proof of this theo-
rem, however, is not constructive. Thus an 
important, and completely open, problem 
is to find an algorithm whose input is a 
finitely generated algebra and the output 

The second invariant t
As before we may decompose A =  

( )B B J Aq15 5 5g  according to Wedder-
burn–Malcev’s theorem. Then:

Theorem (Aljadeff, Janssens and Karasik [2]). 
If A is a finite-dimensional basic algebra 
(see definition below), then 

( ) ( )t A
d q

s2 1=
-
+ -

where dimd Bi

q
i1= =

/  and s Z! + the 
smallest integer such that ( )J A 0s = .

The proof uses, among other things, 
Kemer Theory (i.e., techniques and ob-
jects central in the solution by Kemer of 
Specht’s problem and his representability 
theorem) and introduced the so-called ba-
sic algebras, which can serve as building 
blocks for decomposing algebras up to 
PI-equivalence.

Basic algebras 
With any finite-dimensional algebra, due 
to the theorem of Wedderburn–Malcev, we 
can associate two numbers d and s where 
d and s are as in the theorem above. The 
tuple Par( ) ( , )A d s=  is called the parame-
ter of A. Basic algebras are minimal models 
for a certain given tuple ( , )d s  of numbers 
,d s N! . More precisely:

Definition. A finite-dimensional algebra 
A is called basic if A is not PI equivalent 
to an algebra B B Br1 # #g=  where Bi 
are finite-dimensional algebras such that 
Par( ) Par( )B A<i  for any , ,i r1 f= .

These algebras have the advantage to 
yield geometric and combinatorial transla-
tions. I will not go further in detail and 
rather refer to [3]. Prime examples of ba-
sic algebras are matrix algebras ( )M Cm  
and upper block triangular matrices 
( , , )UT d dl1 f . Also, any (finite-dimensional) 

algebra is PI-equivalent to a direct product 
of basic subalgebras. Since the polynomial 
growth rate t behaves well towards direct 
products above result gives an interpreta-
tion to t for any finitely generated algebra.

Classifying varieties
In the next stage of the story, now that 
we have these invariants containing useful 
algebraic information on A, it is time to use 
them for the problem of classifying varieties 
(cf. section ‘The Classification problem’).

Therefore ( )c A 1n =  for any n and indeed 
( )limd c A 1n n

n= ="3 . In the case of our 
other main example ( )M Cm , the exponen-
tial growth rate d m2=  equals the dimen-
sion of the algebra.10

Next, using topological methods, Berele 
and Regev proved in 2008 the full conjec-
ture except for the part [ , ]c b2Q! r , 
see [4]. Unfortunately this time no concrete 
information concerning t can be extracted 
from the proof. Therefore it remained as a 
main open problem in asymptotic PI theo-
ry to understand this black box. Finally, in 
October 2015, joint with Yakov Karasik and 
Eli Aljadeff, we found a concrete formula 
for the polynomial growth rate t [2]

Time has come to go in detail on the 
concrete information contained in the in-
variants t and d.

The first invariant d
Let A be a finitely generated algebra over 
C. By the representability theorem we may 
even assume A to be finite-dimensional. 
In particular we can decompose it nicely 
according to the theorem of Wedderburn–
Malcev ( )A B B J Aq15 5 5g= . Then

Theorem (Giambruno–Zaicev [6]). With no-
tations as before, 

{

( ) ( ) }

maxdimd B B

B J A J A B 0

i i

i i

r

r

1

1

5 5

$ $

g

g !

;=

where r 1$  and all Bij
 are different simple 

components.

So, as announced, the number d is 
tightly connected to the algebraic structure 
and the way ‘bad’ and ‘good’ elements in-
teract with each other. With this formula 
at hand it is clear that, as mentioned ear-
lier, if ( )A M Cm=  then d m2=  (since then 
( )J A 0= ). More generally, if A is the alge-

bra ( , , )UT d dq1 f  consisting of upper block 
triangular matrices of the type 

( ) *

( )

,

M

M

0

0 0

C

C

d

dq

1

h

j

g

J

L

KKKKKKKKKKK

N

P

OOOOOOOOOOO

then d d dq1
2 2g= + + . Finally, if A is a so-

called quiver algebra, then d tells us what 
is the largest path in the quiver that does 
not pass the same vertex twice.

Giambruno and Zaicev, in [7], also han-
dled the case when A is not a finitely gen-
erated algebra (by using a generalization 
of the representability theorem).

...
...

←− d = 2

←− d = 1

←− d = 0
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on the analoguous conjectures in this set-
ting we refer to [5, 12, 13, 171,,7] and the refer-
ences therein. Last but not least, to find 
methods for finding generators of id( )A  is 
one of the main open challenges.

As a brief summary, in spite of many 
nice results and joyful partial answers 
concerning the classification problem, a 
long and interesting road towards de-
scribing all varieties (and thus all alge-
bras up to PI-equivalence) is ahead of us. 
But there is nothing as nice as a walk on 
a sunny day!	 s

er answer researchers have (successfully) 
started to take more refined information, 
such as certain (algebraic) group or Hopf 
algebra actions or (semi)group gradings, 
into account. Some of the most recent 
results can be found in [1, 10, 11, 14] and 
the references therein. First things first, a 
good starting reference to learn asymptotic 
PI-theory is [9].

Going beyond the above associative 
setting, we note that all definitions make 
sense for non-associative algebras, such as 
Lie algebras. For a survey of the progress 

some finite-dimensional one PI-equivalent 
to it.

In the same spirit, for the polynomial 
part, we use a decomposition into basic 
algebras. Again it would be interesting to 
have a more constructive proof of this. 
Actually more examples of basic algebras 
would already be welcome.

The ultimate goal remains to classify all 
algebras up to PI-equivalence. In full gener-
ality this problem seems to be completely 
out of reach. However, as Steve Jobs said: 
“Stay hungry stay foolish!” Towards a full-

1	 Actually everything holds over an arbitrary 
field of characteristic 0. But for sake of clar-
ity we simply consider C.

2	 In other words, XC G H is the free algebra 
over C generated by the elements x X! .

3	 If it would satisfy a polynomial identity then 
the Weyl algebra would have finite dimen-
sional simple representations. However, the 
Weyl algebra has no finite dimensional rep-
resentations. The latter can be seen by tak-
ing the trace of the equation xy yx 1- = .

4	 This roughly follows from the following two 
observations: on the one hand, fn 12+  is 
multilinear, so it is sufficient to substitute 
the basis elements of ( )M Cn , and there are 
n2 such elements. On the other hand, the 
polynomial is alternating, so if we substitute 
two times the same element the polynomial 
vanish.

5	 By /X IC G H  is meant the quotient XC G H 
by the ideal I. Intuitively this means that 
all elements in I are made equal to zero in 

XC G H.
6	 The name is not a coincidence. Actually 

/id( )X AC G H  is the free object in the cat-
egory consisting of the algebras B with 
id( ) id( )A B3 .

7	 PI-equivalence is really an equivalence rela-
tion.

8	 This is a variety in the sense of Birk-
hoff. Also note that these varieties en-
compass the equivalence classes of the 
PI-equivalence relation. Indeed A BPI+  iff 
(id( )) (id( ))A BV V=  where (id( ))AV = 

{ Alg id( ) id( )}C A CC! ; 3 .

9	 Thus some number that is constant on each 
equivalence class.

10	 Even more holds. Recall that an algebra A 
is simple if and only it the only two-sided 
ideals are { }0  and A. By a theorem of Wed-
derburn such C-algebras are isomorphic to 
some ( )M Cn . It is known that A is simple if 
and only if ( ) ( )exp dimA A= . Thus the PI-ex-
ponent detects simple algebras out of a set 
of algebras.

11	 Note that by the affirmative answer on 
Specht’s problem we may assume S to be a 
finite set. If V is some variety then ( )id V  
is defined as ( )id A

A V!
( . Thus in our case 

( ( )) ( )id S SV idT= -  is the T-ideal generated 
by S. Using this definition it makes sense to 
look at ( ) dimc Vn C ( ) ( )

( )
idPn

Pn
C

C

V
=

+
and its expo-

nential and polynomial growth rates.

12	 Note that ( )exp 1V =  is the same as saying 
that V has polynomial growth.
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