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| Problem Section

This Problem Section is open to everyone; everybody is encouraged to send in solutions
and propose problems. Group contributions are welcome.

For each problem, the most elegant correct solution will be rewarded with a book token
worth €20. At times there will be a Star Problem, to which the proposer does not know
any solution. For the first correct solution sent in within one year there is a prize of €100.
When proposing a problem, please either include a complete solution or indicate that it is
intended as a Star Problem.

Please send your submission by e-mail (LaTeX is preferred), including your name and ad-
dress to problems@nieuwarchief.nl.

The deadline for solutions to the problems in this edition is 1 September 2016.

Problem A (folklore)

Denote for all positive rational numbers z by f(x) the minimum number of 1’s needed
in a formula for x involving only ones, addition, subtraction, multiplication, division and
parentheses. For example, f(1) =1, and f(}) =4, as + = and as no such formula
exists with at most three 1’s. Note that f(11) # 2 (concatenation of ones is not allowed).
Moreover, denote for all positive rational numbers x by hy(z) the number log, (p) +logy (¢),
where log, denotes the base-2 logarithm, and where p, ¢ are positive integers such that
z= % and ged(p,q) = 1.

Show that for all z, we have

f@)>$hy(z).

Problem B (folklore)

Suppose that there are N =2 players, labeled 1,2,....N, and that each of them holds
precisely m > 1 coins of value 1, m coins of (integer) value n > 2, m coins of value n2,
et cetera. A transaction from player ¢ to player j consists of player ¢ giving a finite number
of his coins to player j. We say that an N-tuple (ay,ay, ...,ay) of integers is (m,n)-payable
if Z?[:lal.:O and after a finite number of transactions, the i-th player has received (in
value) a; more than he has given away.

Show that for every N-tuple (a;,as,...,ay) with Zjvzlai =0 to be (m,n)-payable, it is nec-
essary and sufficient that m >n— 5 —1.

Problem C (proposed by Wouter Zomervrucht)

For each integer n > 1 let ¢, be the largest real number such that for any finite set of
vectors X C R™ with 25 _[v[> 1 there exists a subset Y € X with |2 _, v|>c,. Prove
the recurrence relation

-1 =_1
C1 =9, Cp+1~=— 27ne,, *

Edition 2015-4 We received solutions from Johan Commelin and Raymond van Bommel,
Alex Heinis, Pieter de Groen, Alex Heinis, Thijmen Krebs, Hendrik Reuvers and Martijn
Weterings.

Problem 2015-4/A (folklore)

Let » be a positive integer. Given a 1 X n-chessboard made out of paper, one is allowed to
fold it along grid lines, and in such a way that the end result is a flat rectangle, say 1 X m.
For example, the following figure shows side views of valid ways of folding a 1 X 7-chess-
board (gray lines depict white squares).

—_—
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Let a; for i =1,2,...,m be the number of black squares under the i-th square of the re-
sulting rectangle, and consider the tuple (a;, ay, ..., a,,). So in our examples, the respective
corresponding tuples are (1,1,1) and (2,1,1).

Show that for any positive integer m the m-tuple (ay, ay, ..., a,) of non-negative integers
can be obtained via the above process if and only if for all 4, j € {1,2,...,m} such that
i+jis odd, we have (a;a;)#(0,0).

Solution We received solutions from Pieter de Groen, Thijmen Krebs, Hendrik Reuvers and
Martijn Weterings. The book token goes to Martijn Weterings, whose solution the following
is based on.

We first show that any tuple (ay, ay, ..., a,,) obtained by the following process must satisfy
(a;,a,)#(0,0) for all 4, j € {1,2,...,m} such that i +; is odd.

Draw an arrow facing right on the bottom edge of each square of the 1 X n-chessboard.

Forall s € {1,2,...,n}, define

b = {1 if the s-th square is white
§ 1 if the s-th square is black
o = {1 if the s-th square is on an even square of the resulting 1 Xm—rectangle
§ —1 if the s-th square is on an odd square of the resulting 1 Xm—rectangle
d = {1 if the arrow on the s-th square points to the right after folding
§ 1 if the arrow on the s-th square points to the left after folding

Note that b, is independent of s, since bpb, ., is always —1, and exactly one of cc, .,
and dd,,, is —1, depending on whether there is a fold between the s-th square and the
(s + 1)-th square or not.

As there is a connected strip of squares connecting the left edge and the right edge of the
resulting 1 X m-rectangle, it follows that there is a direction such that above each square
of the 1 X m-rectangle there is an arrow pointing in that direction. Now suppose for a
contradiction that there exist 4, j € {1,2,...,m} such that i +; is odd and (a; a;) = (0,0).
Then there are two white squares s, ¢ above 4, j, respectively, that have arrows pointing
in the same direction. Hence b, = b, = 1 and d, = d,. Moreover, we have ¢,=—c¢;as i +J
is odd. But this contradicts bcd, = bed, Hence for all 4, 7 € {1,2,...,m} such that i+ is
odd, we have (a;,a;) # (0,0).

Now it remains to show that if (a;, as, ..., a,,) is such that for all 4, j € {1,2,...,m} such that
i+jis odd, it holds that (a; a;) # (0,0), then it can be obtained via the process described
in the problem. We only treat the case that all ¢ with a; = 0 are even and that the chess-
board starts with a black square; the other three cases are similar.

In this case, we are done by the following greedy algorithm.

— Take n=2(2?:1ai)—1, and as before, draw an arrow pointing to the right on the
bottom edge of each square.

— Place the first (black) square over the first square of the 1 X m-rectangle with an arrow
pointing to the right.

— Repeatedly fold until there are a, black squares lying over the first square, and there
is a white square above the second square of the 1 X m-rectangle. Note that this is
possible as by assumption we have a, # 0. The arrow on the white square is pointing
to the right.

— Repeatedly fold until there are a, black squares above the second square of the
1 X m-rectangle, and there is a black square above the third square of the 1 X m-rect-
angle. The arrow on this square is pointing to the right.

— Repeat the previous two steps alternatingly for the remainder of the squares.

Problem 2015-4/B (proposed by Jinbi Jin)

Let A be a commutative ring with unit, and let I be an ideal of A with I # 0 and I = 0. Let
B be the ring of which the elements are triples (a,, a,, a;) where a;, as, a3 € A are such that
a,+1=a,+1= ay;+I, with coordinate-wise addition and multiplication. Show that there
exist at least four distinct ring homomorphisms B — A.
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Solution We received solutions from Johan Commelin and Raymond van Bommel, Alex
Heinis and Thijmen Krebs. The book token goes to Johan Commelin and Raymond van
Bommel. All received solutions are similar, and the following is based on those.

First note that for ¢ = 1, 2, 3, we have the following ring homomorphism.

fZ:'.B_’A7 ((1’170/270’3) — a;
Moreover, define

g:B— A, (a1,a3,a3) — a1 — ay + ag.

Note thatgisahomomorphismasitisadditive, g(1, 1, 1)=1, and forall(a;, ay, as), (by,b,b3) € B
we have that, using that I = 0,

g(a1,a9,a3) g (by,by,b3) = (a1 — ay + ag) (by — by + b3)
=a1by —agby Hazbs —arby —agby T ayby t 2a30y +azby —azby — azby
= a1by — agby + agbs + (ay — ay) (by — bg) + (ag — az) (by — by)
=a1by —agby +agbs
= g (a1 by,a9by,a3b3).
Finally, note that these homomorphisms are all distinct, by considering the images of
(4,0,0), (0,7,0), (0,0,4) for any non-zero i € I.

Problem 2015-4/C (proposed by Hendrik Lenstra)
Does there exist a non-trivial abelian group A that is isomorphic to its automorphism group?

Solution We received a solution from Alex Heinis. The book token goes to Alex Heinis,
whose solution the following is based on.

Let Z3 denote the ring of 3-adic integers. We show that A= (Z/27Z) ® Z5 is isomorphic to
its automorphism group.

We will use the following well-known fact about Zs: the map exp:3Z3 — 1+ 3Z3 defined by
T Zf:o%ﬂ is a group isomorphism (note that the target group is a subgroup of Z3).
We first show that Aut(A4) and Aut(Zs) are isomorphic. Suppose that ¢ € Aut(4). As
75 has trivial torsion, it follows that (1,0) is the only element in A of order 2. There-
fore ¢(1,0) = (1,0). Moreover, note that 2 is invertible in Zs, so for all z € Z3 we have
0(0,z) =0(0,2 -%x) =20 (0,%95), which is an element of {0} @ Zs. So any automorphism
of A sends {0} ® Z5 to itself; this defines a homomorphism Aut(4) — Aut(Zs).

This map has an inverse which sends a ¢ € Aut(Zs3) to the automorphism of A given by
(s,2) = (s,0 (2)). It follows that Aut(A) is isomorphic to Aut(Zs).

Next, we show that Aut(Zs3) and Z§ are isomorphic. Let o € Aut(Z3). Then first note that
for all 2 € Z, we have o (z) =20 (1). We claim that o (z) = 2o (1) holds for any z € Zs.
Note that for any z € Zs and any e € Z, we have 6 (3°z) = 3°0 (z) and 6 (3°z) = 3¢ 2.
It follows that o preserves the number of factors 3 that occur in elements of Z3, and
therefore in particular that ¢ (1) is invertible in Zs. So now suppose that 2 € Zs, and write
z=xy+z - 3+2y 32+ Then for all k € Zs o we have

olx) = G<kilxi3i)+ 3kd< ixﬁi_k)

i=0 i=k+1

k=1 o

=<in3i)o(1)+3k0( in:si‘k).

i=0 i=k+1

It follows that o (z) =0 (1) for all z € Zs.
Hence we obtain a homomorphism Aut(4) — Z3 sending ¢ to o (1); this map is an iso-
morphism with inverse sending a € Z3 to the automorphism z — az. Therefore Aut(A) is
isomorphic to Z5.
Now note that Z3 has subgroups {+1} and 1+3Z; such that every element z € Z3
can be written uniquely as sy with s=+1 and y €1+ 3Z;. Hence Z; is isomorphic
to {+1}® (1+3Z3); the latter factor is isomorphic to Zs via the map Zs— 1+3Zs,
2 — exp (3z), as desired.



