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An inequality of Gauss

In this article Gerard Hooghiemstra and Piet van Mieghem explain why the Gauss inequality is
overshadowed by the Chebychev inequality. Furthermore, they present a proof of the Gauss

inequality in modern notation.

In his general analysis on measurement er-
rors [4], Gauss treats random errors in a prob-
abilistic manner, which is, with respect to to-
day’s standards, surprisingly modern. Ourin-
terest here is a particularly general inequali-
ty involving probabilities, stated and proved
by Gauss in [4], that does not seem to be
well-known in the stochastic community. The
Gauss inequality is, for instance, not men-
tioned in either of the two introductory vol-
umes [2—3] written by William Feller. The main
goal of this note is to explain why this inequal-
ity is overshadowed by the well-known Cheby-
chevinequality and to present (a slightly mod-
ified) proof of the Gauss inequality.

We start by restating Gauss’ inequality in
modern notation. We consider a random vari-
able X having a density fx, which is symmet-
ric around 0 (i.e., fx(—x) = fx(x), Vx > 0),
and which is non-increasing for x > 0. More-
over, we assume a finite second moment
E[X?] = [T, x2fx(x)dx < o. By symme-
try, the first moment (also called the mean p)
satisfies u = E[X] = [%, xfx(x)dx = 0, so
that the variance of X satisfies:

02 =Var[X] = E[(X — u)?] = E[X?].

Theorem 1 (Gauss [4]). Consider a random
variable X having a density fx, which is sym-
metric around 0 (i.e., fx(—x)= fx(x), Vx >
0), and which is non-increasing for x > 0.
Moreover, we assume that o2 = E[X?] =
1%, x2fx(x)dx < . Defining fora > 0

m=Pr[|X| <ao],
it holds that

if m< % then a <mv/3, (@

if m>§ then as# 2

3/1-m’

At first glance, the two inequalities (1) and
(2) provide little insight. After rearranging, (1)
and (2) can be rewritten as,

then

[SCIN )

if mx<

mx= % ©)

. 2 4
if m>§ then mzl—ﬁ. (%)

The conclusions in (3) and (4) are somewhat
peculiar, since the magnitude of m (m < %
orm > %) is needed, before the respective
statement gives a lower bound for m. The

conclusion in (4) is

4
Pr[IXlsaU]zl—@, (5)

which is valid in the tail of the distribu-
tion, i.e.,, for a large enough such that
Pr{|X|>aoc] < % very closely resembles
the inequality of Chebychev given below. The
inequality of Chebychev below involves the
mean p = E[X] = [Z, x fx(x)dx of X, which,
in general, is unequal to 0.

Chebychev’s inequality

We assume that X has a finite second mo-
ment. Let us denote the mean by u = E[X] =
2, xfx(x)dx and the variance by o2 =
Var[X1= E[(X — u)?]= E[X?] — pu?. In 1867,
Chebychev [6] has proved that

Pr[IXfulsa(r]zlfai

5, a>0. (6)

The proof of Chebychev’s inequality [3, p. 151]
or [5, p. 103] needs a few lines only:
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1. apply the Markov inequality to
Y =(X-w/0)P=0,

where
2. the Markov inequality is given by

EIY]= jo v dy
> L yfy(y)dy

>a L Sfrndy

=aPr(Y >a].

Comparison of the two inequalities

Before we proceed with the comparison of the
inequalities of Gauss and Chebychev, let us
first treat some examples.

Example 1. Let X possess a uniform distribu-
tion on the interval (-s, s), i.e.,

&, —s<x<s,
Sfx(x) =

0, x| > s.

The distribution function Fx(x), defined by
Fx(x) = Pr[X < x], for real numbers x,
reads:

0, X < -5,
Fx(x)=1 [5 gdt =52, —s<x<s, ()
1, X = S.

In th&s example, u = E[X] = 0 and 02 =
S¢3;dx = s?/3, so that o = s/v/3. By
straightforward calculation, we have

Example 2. We perform the same computa-
tions for X, now having a normal distribution
with parameters u = 0 and 02 = E[X?]. The
probability distribution function

X
Fx(x) = 1 J e 1?20 4t

o2

cannot be expressed in elementary functions,
but the specific probabilities can be found
from tables of the standard normal distribu-
tion. An accurate series forthe inverse Fy!(x)
exists [5, p. 44]. Let Z have a standard normal
distribution, i.e., a normal distribution with
parameters =0 and 02 = 1, then

Pr{|X| <ao]
=Pr[X <aoc]-Pr[X < —-ao]
=Pr[Z <a]-Pr[Z < -al
=1-2Pr[Z > al,

where the probability Pr[Z > a] can be found
in many places, for instance, in [1, Table B.1,

p. 432].

Example 3. As a third example, we take a sym-
metric distribution with heavy tails. Roughly
speaking, a distribution has a heavy tail, if the
survival function Pr[|X| > t] decays polyno-
mially in £. Awell-known example is the Pare-
to distribution [1, p. 63]. A random variable
X is said to have a Pareto distribution with
parameter « > 0, if its probability density
Jualx)=0is, forx < 1, and equal to

X

gax)= ——

oSy for x> 1.

To satisfy the conditions of Theorem 1, we
make the density fx symmetric by defining,

Rather than computing the distribution func-
tion Fx, we instead derive Pr[|X]| < ao] di-
rectly from the density fx. By construction,
E[X] =0 and the second moment is

o2 = E[X?] = ro x? fx(x)dx

= ZJ lega(l +x)dx
0 2

© _1)2
:I ‘X(xowll) dx
1 X
_ 2
(= 1)(x—2)’

since [\ )‘j‘o’ﬁ dx = «/(x — B) for x > B.
Hence, we need to require that «« > 2 in order
to have a finite variance E[X?] < c. We shall
take o« = 3 (and hence o = 1) and find by
integration:

a
Pr(|X]| saa]=2j0 %g3(1+x)dx
a
3
_Jo (x+1)4 ax

B 1
1+a)d’

In Table 1, we present Pr[|X| < ao] for the
distributions of Examples 1,2 and 3 and com-
pare for various values of a the lower bounds
of Gauss (5) and Chebychev (6), respective-
ly. In the table, the abbreviation ‘n.r.” stands
for ‘not relevant’, since for the correspond-
ing values of a in all three cases, we have
m> 3.

The lowerbound (5) of Gauss is in all exam-
ples tighter than (6) of Chebychev. However,
two remarks are in order: (i) the lower bound
of Gauss is only valid under more stringent
conditions, but more importantly (i) we must

Pr{|X| <ao] .

] ) 1ol ) >0 know, whether m = Pr(|X| < ao) is larger or
= Fx(min{s, ac’}) - Fx(- min{s, ao’}) Frlx) = ig"‘ +x) o x=0 smaller than %, which is not straightforward
=min{1,a/v3}. 2901-x), x=<0 atall.

a 3 1 3 2 3 3
Pr[|X| < ao] for Example 1. 0.289 0.577 0.866 1 1 1
Pr[|X| < ao] for Example 2. 0.383 0.683 0.866 0.954 0.988 0.997
Pr[|X| < ao] for Example 3. 0.704 0.875 0.936 0.963 0.977 0.984
Lower bound from Gauss (m < %) (cf. 3) 0.289 0.577 n.r. n.r n.r n.r
Lower bound from Gauss (m > %) (cf. (4) -0.778 0.556 0.802 0.889 0.929 0.951
Lower bound from Chebychev (cf. (6)) -3 0 0.556 0.750 0.840 0.889

Table 1 Comparison table.
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Figure 1 A distribution function u=Fx (x) (in the inset) of a random variable X that is symmetric around x=0 and its in-

verse function x=Fx ! (u).

One might consider to approximate m by the
lower bound, because we know that m falls
in between the lower bound and 1. This ap-
proximation is rather crude, however in the
tail (m > %), the lower bound of Gauss is
definitely better than that of Chebychev. Also
note that in case (i), the uniform distribution,
the lower bound of Gauss gives the exact val-
ues form = Pr(|X| < ao), form < %

For the theoretical value of the lower
bounds, we consider an important applica-
tion, namely the weak law of large numbers
[3, p. 234]. Informally, the weak law of large
numbers states that the average of repetitive
and independent measurements converges
(in probability) to the mean of the distribu-
tion. Indeed, for a series of repetitive and
independent measurements X1, X>,...,Xn
with density satisfying the conditions of Theo-
rem 1, the mean of the underlying distribution
is 0 and

5 X1+Xo+-- -+ X
Xy = 1 Zn n

converges to 0, in the sense that for each € >
0,

lim Pr{| X,,| > £] = 0.

This follows directly from the inequality (5) of
Gauss, since

Var [Xn] = Var [M]

n
= %Var[xl +Xo+ -+ Xl
n
1
= E{Var[xl]+- -+ Var [ X, 1}

1, o?
= —=no?="-.
n n

Indeed, we find that, for n — o, and with
a=é¢e/n/o,

Pr{|X,| >¢e]=1-Pr[|X,| < ¢]

5 g Jn
=1-Pr [anl < ﬁf?]
40°?
< — -
9¢2n

However, the same conclusion can be drawn
by applying the Chebychev inequality (6), in
which case the upper bound is replaced by

1 o

N2 2
Vn &n
(5)

which also converges to 0. Hence, fortheoret-
ical purposes, the advantage of the factor g
in Gauss’ inequality (5) compared to Cheby-
chev’s inequality (6) is unimportant and is
washed out entirely by the fact that Cheby-
chev’s inequality holds under the single con-
dition that X must have a finite second mo-
ment. We believe that this explains why
Gauss’ inequality (5) is barely known in the
stochastic community.

Proof of the Gauss inequality

In this section we present a proof of the Gauss
inequality in modern notation. In his proof [4]
in Latin (translated to English in [5, pp. 11—
112]), Gauss uses the inverse of the function
hdefined by h(x) = Fx(x)—Fx(-x), x > 0. It
is slightly easier to concentrate on the inverse
function Fx?!, which we define below. Since,
in the framework of Theorem 1, we exclusively
work with continuous distribution functions
and since these functions are by definition
non-decreasing, we can define

Fylwy=inf{x:F(x)=u}, O<u<l,

and, on intervals where fx(x) = 0, or sim-
ilarly, where Fx(x) is constant, we take the
left-endpoint of that interval.

The general definition of the expectation
of a function g of X is

Elg0]- | gm0, @®

After the substitution x = Fx' (u) or u =
Fx (x) and du = dFx (x) = fx(x)dx, we
obtain

1
_ -1
Elg00]= [ o (F o) du,
from which the mean
1
u=E[X]= JO Fxlw)du

and the second moment

1
E[X?] = JO (Fx'(w)? du

follows. A probabilistic way to obtain the
same result is as follows. Let U be a uni-
form random variable on (0, 1), then for all
real numbers x,

{U < Fx(xeh) = {Fx' ) <x}. (9

For a random variable with a uniform distribu-
tion on (0, 1), we have

u
Pr[Usu]=J0 dx=u, O<u<l,
so that substitution of u = Fx(x) yields

PrlU < Fx(x)] = Fx(x). (10)
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Combining (9) and (10) gives:

Pr[Fy!(U) < x] = Fx(x),

so that X and Fy! (U) are equal in distribu-
tion. Thus, also the expectations E [g (X)]
and E [g (F}}1 (U))] are equal, for any func-
tion g. Invoking the general definition (8), we
find again

After this preparation, we start with the proof.
Since Gauss assumed that fx is symmetric
around 0 and that fx(x) is non-increasing for
x > 0, the function u = Fx(x) is concave for
x > 0. As a consequence and also illustrated
in Figure 1, the inverse function x = F;l(u) is
convex foru € [%, 1].

Theidea ofthe proofis that, forthe uniform
distribution on a symmetric interval around
zero, the inequality (1) is sharp fora < /3,
as was shown in Example 1, where we de-
rived that m = a/+/3 fora < /3. Since
the uniform distribution function is a linear
function on its support (see (7)), we will re-
place F}}l(u) on a sub-interval of [%,l] by
the tangent to the function Fgl (u) in the
point u = Fx(ao), where a is any positive
real number (see Figure 1). From the ba-
sic identity Fx'(Fx(»)) = v, we find that
(Fx'Y (Fx(»)fx(») = 1. Hence, the equation
of the tangent at u = Fx(ao) reads

The intersection of the tangent to the func-
tion Fx!' (u) at u = Fx(ao) with the u-
axis is given by u* = Fx(ao) — ao fx(ao).
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