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The spectral model
of particle physics

The discovery of the Higgs particle at CERN in Geneva in 2012 formed

the crown on the so-called Standard Model of particle physics. De-

spite its enormous phenomenological success, much of the under-

lying mathematics remains still to be understood. Walter van Suij-

lekom, Assistant Professor in mathematical physics at IMAPP, here

lifts the curtain of what noncommutative geometry can already say

about the Standard Model, offering an intriguing perspective of

what space looks like at scales analysed by particle accelerators.

Van Suijlekom’s book Noncommutative Geometry and Particle Physics

has just appeared with Springer and gives an introduction to the sub-

ject. In this article, he starts his exposition with the famous math-

ematical question “Can one hear the shape of a drum?”, and then

moves to the noncommutative world, using not much more but matrix

multiplication.

This article was written on the occasion of the workshop ‘Noncommu-

tative Geometry and Particle Physics’, organized at the Lorentz Center

in Leiden in October 2013. See www.noncommutativegeometry.nl for

more information on this workshop, and on the field in general.

Spectral geometry

Noncommutative geometry [11] can be considered as a generalization

of spectral geometry to the quantum world. So, let us start with a

brief tour through spectral geometry. One deals with the question

how the geometric structure of a Riemannian manifold M — that is, a

topological space that looks locally like Euclidean space — determines

the spectrum of the Laplacian on M (cf. [10]). The inverse problem,

how the manifold M is determined by the spectrum of the Laplacian

leads to the famous question “Can one hear the shape of a drum?”, as

posed by Mark Kac in 1966 [16]. The answer to this question is “no”, as

is well known by now, e.g. through the construction of two isospectral Figure 1 Two isospectral domains in R
2 whose Laplacians have the same spectrum [14].
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polygonal domains in R
2 (two ‘drums’) (cf. Figure 1). Here the

metaphoric sound of a Riemannian manifold is governed by the

Helmholtz equation satisfied by the amplitude u of a wave onM,

∆Mu = k2u,

where ∆M is the Laplacian and k is the wave number. This wave

number can thus essentially be found by taking the ‘square-root’ of the

Laplacian. More precisely, one searches for an operator that squares

to ∆M and analyses its spectrum of eigenvalues. It was Paul Dirac

who found such a differential operator. Even though it does not always

exist, it does so on Riemannian spin manifolds to which we will restrict.

Let us consider some examples of Dirac operators for low-dimensional

tori.

Dirac operators on the circle, 2-torus and 4-torus

We parametrize the circle S
1 by an angle t ∈ [0,2π ). The Dirac operator

on the circle then reads

DS1 = −i
d

dt
.

The square (DS1 )2 = −
d2

dt2
is indeed the Laplacian on the circle.

Note that the eigenfunctions of DS1 are the complex exponential

functions

eint = cosnt + i sinnt,

for any integer n ∈ Z, with eigenvalue n. Hence, the spectrum of DS1

is given by the set of integers Z and we arrive at the usual circular

harmonics given by Fourier series.

Next, consider the two-dimensional torus T
2. It can be parametrized

by two angles t1, t2 ∈ [0,2π ). The Laplacian then reads

∆T2 = −
∂2

∂t2
1

−
∂2

∂t2
2

.

At first sight it seems difficult to construct a differential operator that

squares to ∆T2 . In fact, squaring any linear combination of the two

partial derivatives results in cross-terms:

(
a
∂

∂t1
+ b

∂

∂t2

)2

= a2 ∂
2

∂t2
1

+ 2ab
∂2

∂t1∂t2
+ b2 ∂

2

∂t2
2

Figure 2 Wave function on T
2 corresponding to n1=2,n2=4; grey levels correspond to the

amplitude u of the wave.

Figure 3 List of the eigenvalues of D
T2 .

for any two complex numbers a and b. Of course, the demands a2 =

b2 = −1 and ab = 0 cannot hold simultaneously.

This puzzle was solved by Dirac, who considered the possibility that

a and b be complex matrices. Namely, if

a =

(
0 1

−1 0

)
, b =

(
0 i

i 0

)
,

then with i2 = −1 we do have a2 = b2 = −1 and ab + ba = 0, as one

can readily check.

Hence the Dirac operator on the torus is

DT2 =


 0

∂
∂t1

+ i ∂
∂t2

−
∂
∂t1

+ i ∂
∂t2

0


 ,

which indeed satisfies (DT2 )2 = ∆T2 . Since the eigenvalues of the

Laplacian on the torus are given by n2
1 + n2

2 for integers n1 and n2, it

follows that the spectrum of the Dirac operator DT2 is

{√
n2

1 +n2
2 : n1, n2 ∈ Z

}
,

and is depicted in Figure 3. A typical eigenfunction of the Dirac operator

on the torus is given in Figure 2.

Let us jump to four dimensions — of direct relevance to physics —

and consider as a final example the Dirac operator on the 4-torus T
4.

We now have four angles t1, t2, t3, t4, and the Laplacian is

∆T4 = −
∂2

∂t2
1

−
∂2

∂t2
2

−
∂2

∂t2
3

−
∂2

∂t2
4

.

The same problem as above arises in the search for a differential op-

erator that squares to ∆T4 . Again, allowing for matrices solves the

problem, but we need more as there are now four matrices that must

square to −1 and mutually multiply to 0. Here, there is a beautiful ap-

pearance of Hamilton’s quaternions. Recall that besides the complex

i, the field of quaternions contains elements j and k that satisfy

i2 = j2 = k2 = ijk = −1.

From this one can derive that ij = −ji, ik = −ki, et cetera. The Dirac
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Figure 4 List of the eigenvalues of D
T4 .

operator on T
4 is conveniently written in terms of quaternions as

DT4 =


 0

∂
∂t1

+ i ∂
∂t2

+ j ∂
∂t3

+ k ∂
∂t4

−
∂
∂t1

+ i ∂
∂t2

+ j ∂
∂t3

+ k ∂
∂t4

0


 , (1)

A straightforward computation then shows that its square coincides

with ∆T4 . As a consequence, the spectrum of DT4 is given by

{√
n2

1 +n2
2 +n2

3 +n2
4 : n1, n2, n3, n4 ∈ Z

}
,

and is depicted in Figure 4.

Riemannian spin manifolds

More generally, a Dirac operator DM on a Riemannian manifold (M,g)

is a square-root (up to scalar terms) of the Laplacian on M. It ex-

ists when M is a Riemannian spin manifold, we refer to [2] for more

details. What is important for us is that even though the eigenval-

ues of DM do not completely determine M, certain information of

it can be subtracted from the spectrum of DM . A famous result is

Weyl’s asymptotic law, stating that the number NDM (Λ) of eigenval-

ues smaller (in absolute value) than Λ ≥ 0 is given asymptotically

by

NDM (Λ) ∼
ΩnVol(M)

n(2π )n
Λn,

in terms of the dimensionn ofM andΩn is the volume of then-sphere.

Hence, from the growth of the eigenvalues of DM one can derive the

dimension ofM. For the tori in dimension two and four, this can already

be seen from the parabolic shapes in Figures 3 and 4.

In the applications of noncommutative geometry to particle physics

one interprets the above counting functionNDM (Λ) as a so-called spec-

tral action functional [3–4] describing dynamics and interactions of the

physical particles and fields. We will consider a smooth version of the

counting function, to wit

Trf

(
DM

Λ

)
=
∑

λ

f

(
λ

Λ

)
,

where f is a smooth version of a cutoff function, Tr is the trace,

and the sum on the right-hand side is over all eigenvalues of DM .

For illustrational purposes, we will restrict in this article to the ex-

ponential cut-off function, that is to say, a Gaussian function (cf.

Figure 5):

f (x) = e−x
2
. (2)

The main reason for doing so is that Tr e−D
2
M /Λ2

is the so-called heat

kernel for the Laplacian D2
M , whose asymptotics as Λ → ∞ is well-

known [2]. As a matter of fact, asymptotically we have

Tr e−D
2
M /Λ2

∼
Vol(M)Λn
(4π )n/2

, (3)

in concordance with Weyl’s estimate above.

As should be clear by now, the spectrum of DM does not capture

all of the geometry of M. This can be improved by considering be-

sides DM also the space of smooth complex-valued functions on M,

denoted by C∞(M). For instance, the distance function on M can be

written as

d(p,q) = sup
f∈C∞(M)

{
|f (p)− f (q)| : gradient f ≤ 1

}
,

where the gradient of f can be controlled with the commutator

[DM , f ] = DMf − fDM . For instance, on the circle we have [DS1 , f ] =

−i
df
dt . The translation of distances between points via functions on

that space is illustrated in Figure 6.

Finite noncommutative spaces

Let us consider finite spaces F , equipped with the discrete topology.

That is, consider the space F consisting of N points:

1• 2• · · · · · · N•

The space C∞(F ) of smooth functions on such a finite space is simply

given by C
N : one complex number for each of the function values at

the points of F . An element f ∈ C∞(F ) can be conveniently written as

a diagonal matrix:

Figure 5 Smooth cutoff function given by equation 2.
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b b

x y

f

b b

x y

Figure 6 The distance between the points x and y can be translated to the distance be-
tween f (x) and f (y) for functions with gradient equal to 1.

f  




f (1) 0 · · · 0

0 f (2) · · · 0

...
. . .

...

0 0 . . . f (N)



,

and the matrix product corresponds to the pointwise product of func-

tions: fg(p) = f (p)g(p) for two functions f , g at any point p in F .

For such finite space there is an analogue of a Dirac operator, which

in this finite case is an arbitrary hermitian matrix DF . As before, a

distance function on F can be defined as

d(p,q) = sup
f∈C∞(F )

{
|f (p)− f (q)| : ‖[DF , f ]‖ ≤ 1

}
, (4)

where the ‘gradient’ ‖[DF , f ]‖ is defined as the square root of the

largest eigenvalue of the matrix [DF , f ]∗[DF , f ]. In fact, d(p,q) is a

generalized distance function on F as it can take the value∞.

Example 1. Consider the space F consisting of two points:

F = 1• 2•

Then, smooth functions are diagonal 2× 2-matrices, so that

C∞(F ) :=

{(
λ1 0

0 λ2

)∣∣∣∣∣λ1, λ2 ∈ C

}
,

where λ1 is the function value at point 1, and λ2 at point 2.

We can take as a ‘finite Dirac operator’ the hermitian matrix

DF =

(
0 c

c 0

)

for some constant c ∈ C. The distance formula 4 then becomes

d(p,q) =

{
|c|−1, p 6= q,

0, p = q.

We conclude that the distance between 1 and 2 in F is dictated by the

constant c that defines DF .

The geometry of F gets much more interesting if we allow for a non-

commutative structure at each point of F . That is, instead of diagonal

matrices, we consider block diagonal matrices

A =




a1 0 · · · 0

0 a2 · · · 0
...

. . .
...

0 0 . . . aN



,

where the a1, a2, . . . aN are square matrices of size n1, n2, . . . , nN ,

respectively, associated to the N points of F . Hence we will consider

the vector space

VF := Mn1 (C)⊕Mn2 (C)⊕ · · · ⊕MnN (C), (5)

where Mn(C) stands for the space of n × n-matrices with complex

entries.

We will consider the vector spaceVF of such block diagonal matrices

as a replacement for functions on F . Since the matrix product is not

commutative, we have enriched the perhaps not-so-interesting finite

space F with a noncommutative structure.

As far as the finite Dirac operator is concerned, already in the com-

mutative case this operator was given as a matrix, and its definition

continues to make sense when considering block diagonal matrices in

VF . Thus, in order to describe a finite noncommutative space F we

consider the pair given by the vector space VF and a hermitian matrix

DF . Note that this is a purely linear-algebraic set of data, which ex-

plains the ease with which computations can be done in the context of

particle physics.

Remark 2. For pedagogical purposes we carefully avoided the notion of

an associative algebra, using only basic linear algebra concepts such

as matrices and matrix multiplication. In order to connect to the usual

terminology encountered in most texts on noncommutative geometry

let us mention that the vector space VF is an example of an associative

∗-algebra, with product given by matrix multiplication and∗-structure

given by hermitian conjugation.

Example 3. The two-point space can be given a noncommutative struc-

ture by considering the space VF of 3 × 3 block diagonal matrices of

the following form:



λ 0 0

0 a11 a12

0 a21 a22


 , (6)

with complex entries λ,a11, a12, a21 and a22. Hence, point 2 in F has

a noncommutative structure given by 2× 2 matrices.

A hermitian 3× 3-matrix can then be chosen of the form

DF =




0 c 0

c 0 0

0 0 0




inspired by Example 1 and which turns out to be relevant for our physical
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applications later on. Of course, mathematically speaking any other

choice of a hermitian matrix DF is a valid one.

Perturbation semigroup

The approach we have sketched above to spectral (noncommutative)

geometry is still static: the Dirac operator is fixed. We now make this

more dynamical by perturbing the operator DF by matrices in VF , and

DM by functions on the manifold M. This naturally gives rise to the

structure of a semigroup of perturbations [8]. We recall that in general

a semigroup is defined as a set equipped with an associative multipli-

cation.

Definition 4. Let VF be the space defined in (5). We define the pertur-

bation semigroup of VF as the following subset in the tensor product

VF ⊗ VF :

Pert(VF ) :=




∑

j

Aj ⊗ Bj

∣∣∣∣∣

∑
j Aj (Bj )

t = I∑
j Aj ⊗ Bj =

∑
j Bj ⊗Aj



 ,

where t denotes matrix transpose, I is the identity matrix in VF , and

denotes complex conjugation of the matrix entries.

The semigroup law in Pert(VF ) is given by the matrix product in

VF ⊗ VF , i.e. on Kronecker products A ⊗ B, A′ ⊗ B′ the semigroup

multiplication is

(A⊗ B)(A′ ⊗ B′) = (AA′)⊗ (BB′).

The two conditions in the definition of Pert(A) are called the nor-

malization, and self-adjointness condition.

Let us check that Pert(VF ) is indeed a semigroup. The normalization

condition carries over to products,


∑

j

Aj ⊗ Bj




∑

k

A′k ⊗ B
′
k


 =

∑

j,k

(AjA
′
k)⊗ (BjB

′
k),

for which

∑

j,k

AjA
′
k(BjB

′
k)t =

∑

j,k

AjA
′
k(B′k)t (Bj )

t = I,

because matrix transpose reverses the order of the matrices. Similarly,

one checks that the self-adjointness condition is respected when taking

products of two elements in Pert(VF ).

Let us illustrate this rather abstract definition with some examples.

Example 5. Consider the two-point space with VF = C
2, i.e. the space

of diagonal 2 × 2 matrices as considered in Example 1. Let e11, e22

denote the standard basis of such diagonal matrices:

e11 =

(
1 0

0 0

)
, e22 =

(
0 0

0 1

)
.

Then we can write an arbitrary element of Pert(C2) in terms of this basis

as

z1e11 ⊗ e11 + z2e11 ⊗ e22 + z3e22 ⊗ e11 + z4e22 ⊗ e22,

P
h
o
to

:
B
er

t
B
ee

le
n

The founder of noncommutative geometry Alain Connes visiting the Radboud University
Nijmegen (March 2014), here together with the author behind Foucault’s pendulum in the
Huygens building.

with complex coefficients z1, . . . , z4. Since the matrix multiplication

between e11 and e22 follows simple rules, the normalization condition

becomes

z1 = 1 = z4.

Instead, the self-adjointness condition reads

z2 = z3.

This leaves only one free complex parameter, say z2, and we conclude

that Pert(C2) ≃ C.

More generally one can show along the same lines that the perturba-

tion semigroup Pert(CN ) for the space ofN points is given by C
N(N−1)/2

with semigroup structure given by componentwise product.

Example 6. Let us consider a noncommutative example, to wit

VF = M2(C). We can identify M2(C) ⊗ M2(C) with M4(C) so that ele-

ments in Pert(M2(C) are 4×4-matrices satisfying the normalization and

self-adjointness condition. One can show that we have in a suitable

basis:

Pert(M2(C)) =








1 v1 v2 iv3

0 x1 x2 ix3

0 x4 x5 ix6

0 ix7 ix8 x9




∣∣∣∣∣
v1, v2, v3 ∈ R

x1, . . . , x9 ∈ R




.

It is quite remarkable that the product of two such matrices is again of

the same form, as it should be to form a semigroup. In fact, one can

show that Pert(M2(C)) is a semidirect product of semigroups,

Pert(M2(C)) ≃ R
3

⋊ S,

where S is the semigroup of 3× 3 matrices of the form



x1 x2 ix3

x4 x5 ix6

ix7 ix8 x9


 ,
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where x1, . . . , x9 are real numbers. More generally, one can identify a

real vector spaceW and a semigroup S′ such that

Pert(MN (C)) ≃ W ⋊ S′.

This is further worked out in the thesis [18] and in [19].

Example 7. Even though strictly speaking Definition 4 of the pertur-

bation semigroup applies only to (noncommutative) finite topological

spaces, let us see what we can say for the case of a smooth manifoldM.

The vector spaceVF is replaced by the space of smooth complex-valued

functions on M, denoted C∞(M). Now, we can consider functions in

the tensor product C∞(M) ⊗ C∞(M) as functions of two-variables. In

other words, they are elements in C∞(M ×M). The normalization and

self-adjointness condition in Pert(C∞(M)) translate accordingly and

yield

Pert(C∞(M)) =

{
f ∈ C∞(M ×M)

∣∣∣∣∣
f (x,x) = 1

f (x,y) = f (y,x)

}
,

where x,y ∈ M.

Let us then come back to the general set-up, with VF as in equation

(5) with block diagonal matrices of arbitrary (but fixed) size. As a first

result we have:

Proposition 8. Let U(VF ) be the unitary block diagonal matrices in

VF . This space forms a group which is a subgroup of the semigroup

Pert(VF ).

Proof. The space of unitary matrices in VF forms a group with inverse

of a unitaryU given byU∗. IfU is a unitary block diagonal matrix in VF ,

then we claim that the Kronecker product U ⊗U defines an element in

Pert(VF ). Indeed, the normalization condition is satisfied because of

unitarity

UU
t

= UU∗ = 1,

and U ⊗U trivially satisfies the self-adjointness condition. �

The significance of the perturbation semigroup becomes clear in

its action on hermitian matrices. Indeed, an element
∑
j Aj ⊗ Bj ∈

Pert(VF ) acts on a hermitian matrix D by matrix multiplication on the

left and on the right as:

D 7→
∑

j

AjDB
t
j ,

which is then considered as a perturbation of D. This action is com-

patible with the semigroup law, since

∑

j,k

(AjA
′
k)D(BjB

′
k)t =

∑

j

Aj


∑

k

A′kD(B′k)t


 (Bj )

t

and it respects hermiticity of D precisely because of the self-

adjointness condition:

P
h
o
to

:
B
er

t
B
ee

le
n

Alain Connes during the IMAPP Colloquium in Nijmegen (March 2014) presenting (part of)
the Standard Model Lagrangian.


∑

j

AjD(Bj )
t



∗

=
∑

j

BjD(Aj )
t =

∑

j

AjD(Bj )
t .

The restriction of this action to the unitary group U(VF ) gives

D 7→ UDU∗.

The crucial point is that conjugation by a unitary leaves the spectrum

of D invariant. As such, the spectral action functional is an invariant

under this action. In physics, this corresponds to gauge invariance

and U(VF ) is recognized as the gauge group.

Let us conclude with a discussion on the action in the examples

treated before.

Example 9. Let us consider the action of Pert(C2) ≃ C ( cf. Example 5)

on the symmetric matrix

DF =

(
0 c

c 0

)
.

One finds thatφ ∈ C ≃ Pert(C2) acts as
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DF 7→

(
0 cφ

cφ 0

)
.

The group of unitary diagonal 2 × 2 matrices is U (1) × U (1) and an

element (λ1, λ2) therein acts on the perturbed DF , and consequently

onφ as

φ 7→ λ1λ2φ.

Example 10. Let us consider a noncommutative example, namely, the

action of Pert(C⊕M2(C)) on the operatorDF of Example 3. The pertur-

bation semigroup behaves nicely with respect to direct sums and we

find in this case that

Pert(C⊕M2(C)) ≃ M2(C)× Pert(M2(C)).

It turns out that only M2(C) ∈ Pert(C⊕M2(C)) acts non-trivially on the

above DF . If we label the entries of the first column of such a 2 × 2

matrix byφ1 andφ2 we arrive at

DF 7→




0 cφ1 cφ2

cφ1 0 0

cφ2 0 0


 .

We will see later that the two fieldsφ1 andφ2 turn out to parametrize

the famous Higgs field in physics.

The group of unitary block diagonal matrices is nowU (1)×U (2) and

an element (λ,u) therein acts as

(
φ1

φ2

)
7→ λu

(
φ1

φ2

)
. (7)

Example 11. Let us end with a commutative but continuous example

and consider a smooth manifold M. The action of Pert(C∞(M)) (cf.

Example 7 on the partial derivatives appearing in a Dirac operator DM
on a Riemannian spin manifoldM is given by

∂

∂xµ
7→

∂

∂xµ
+

∂

∂yµ
f (x,y)

∣∣∣∣∣
y=x

, (µ = 1, . . . , n),

where f ∈ C∞(M ×M) is such that f (x,x) = 1 and f (x,y) = f (y,x).

In physics, one writes

Aµ :=
∂

∂yµ
f (x,y)

∣∣∣∣∣
y=x

,

which turns out to be the electromagnetic potential giving rise to the

electromagnetic field that describes the photon. We refer e.g. to [15]

for more details on the theory of electrodynamics.

A unitary element u in C∞(M) acts by conjugation on the partial

derivatives, or, which is the same, can be absorbed by the transforma-

tion

Figure 7 The product of M with the two-point space of Example 1 can be identified with
the space consisting of two copies of M.

Aµ 7→ uAµu
∗ +u∂µu

∗,

which is the usual form of a gauge transformation in physics.

Applications to particle physics

We now combine a Riemannian spin manifoldM with a finite noncom-

mutative space F , considering the latter as an internal space at each

point of M. In other words, we form the direct product M × F and

consider matrix-valued maps from M to VF as functions on this non-

commutative space. Thus, if F describes a space ofN points, possibly

with some noncommutative structure at each point, the productM ×F

can be considered as a (noncommutative) space consisting ofN copies

of the manifoldM (see Figure 7 for N = 2).

The next ingredient is the Dirac operator onM×F which is defined to

be the product ofDM andDF . More precisely, ifM is four-dimensional

we can write DM as the following block matrix:

DM =

(
0 D+

M

D−M 0

)
.

This was indeed the case for the four-dimensional torus, where we had

in equation (1):

D±M = ±
∂

∂t1
+ i

∂

∂t2
+ j

∂

∂t3
+ k

∂

∂t4
.

We combine this with the finite Dirac operatorDF by setting as a Dirac

operator on the productM × F :

DM×F =

(
DF D+

M

D−M −DF

)
.

The crucial property of this specific form is that it squares to the sum

of the two Laplacians onM and F :

D2
M×F = D2

M +D2
F ,

which follows from a simple matrix calculation. This is very useful in

the computation of the spectral action functional. Let us carry out this

computation in the simple case that f is a Gaussian function as in (2).
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Then, we can expand the exponential in powers of DF :

Tr e−D
2
M×F /Λ2

= Tr

(
1−

D2
F

Λ2
+
D4
F

2Λ4
− · · ·

)
e−D

2
M /Λ2

. (8)

If we use equation (3) in this expression and ignore terms proportional

to Λ−1, we arrive in dimension n = 4 at

Tr e−D
2
M×F /Λ2

=
Vol(M)Λ4

(4π )2
Tr

(
1−

D2
F

Λ2
+
D4
F

2Λ4

)
+ O(Λ−1).

AsΛ is supposedly large, we will ignore the terms proportional toΛ−1.

Hence, up to overall constants, the spectral action functional yields a

potential for DF , i.e.

V (DF ) = Λ4 −Λ2 TrD2
F +

1

2
TrD4

F . (9)

This potential plays a crucial role in the Higgs spontaneous symmetry

breaking mechanism, as we will now explain.

Noncommutative two-point space and the Higgs boson

Let us consider the space M × F where F is the two-point space in-

troduced in Example 3. Then, the distance on the space M × F is the

combination of the ordinary Riemannian distance on each copy of M,

and the two copies are at distance |c|−1 from each other.

If one includes the perturbations ofDF analysed in Example 10, then

DF becomes parametrized by the Higgs fieldsφ1,φ2, which may now

vary over the points inM. The potential of equation (9) then becomes

a potential for the complex fieldφ:

V (φ) = Λ4 − 2Λ2(|φ1|
2 + |φ2|

2) + (|φ1|
2 + |φ2|

2)2. (10)

This is the famous ‘mexican-hat’ potential depicted in Figure 8. It is

the starting point of the Higgs spontaneous symmetry breaking mech-

anism, as we will explain next.

Figure 8 The ‘mexican-hat’ potential V (φ) of equation (10) in terms of |φ1| and |φ2|.

First, note the circular symmetry in Figure 8, which in fact corre-

sponds to the invariance of the potential under the U (1)×U (2)-action

of equation (7). However, in physics particles and fields tend to min-

imize potentials and it is already clear from the picture that any such

minimum breaks this symmetry. This procedure is called spontaneous

symmetry breaking. Essentially, a minimum of V sets φ1 and φ2 to

certain fixed vacuum values, say v and 0 respectively. Accordingly,

this freezes the distance between the two layers to be proportional to

|v|−1, as explained in Example 1. If one takes all constants and physi-

cal units properly into account, one derives from the recently measured

mass of the Higgs boson (approximately 125.5 GeV) that the distance

between the two layers in Figure 7 is of the order of 10−18m .

Noncommutative three-point space and a new particle?

We now consider the case that F is a three-point space, with the non-

commutative structure dictated by the matrices

VF = C⊕ C⊕M2(C).

That is to say, we consider matrices of the form

A =




λ1 0 0 0

0 λ2 0 0

0 0 a11 a12

0 0 a21 a22




for complex numbers λ1, λ2, a11, a12, a21, a22.

We can make the following convenient choice of finite Dirac operator

for this three-point space:

DF :=




0 0 c 0

0 0 0 0

c 0 0 0

0 0 0 0



,

Even though the matrix DF contains mainly zeroes, the perturbations

of it coming from the semigroup Pert(VF ) are rather non-trivial and give

Figure 9 The ‘bowler hat’ potential V (σ1,σ2) of equation (11) in terms of |σ1| and |σ2|.
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rise to two scalar fields σ1 and σ2. The potential derived in equation

(9) becomes a potential for these fields, now of the form

V (σ1, σ2) = Λ4 − 2Λ2(|σ1|
2 + |σ2|

2)2 + (|σ1|
2 + |σ2|

2)4. (11)

Note that this is a polynomial expression of order 8, as opposed to the

order 4 encountered before for the Higgs field (cf. [8] for the full details

on this example). The resulting ‘bowler hat’ potential is depicted in

Figure 9.

Again, the potentialV (σ1, σ2) is invariant under the group of unitary

matrices in VF , which in this case is U (1) × U (1) × U (2). If the fields

(σ1, σ2) attain a minimum, this spontaneously breaks this symmetry.

A similar discussion as before for the Higgs field also applies to the

σ -field, freezing the two layers to be separated by an even smaller

distance of 10−27m (corresponding to the mass of the σ -particle to be

of the order of 1012GeV).

The Standard Model of particle physics

We now sketch how the above toy models extend and combine to

give a noncommutative geometrical description of the Standard Model

of particle physics. First, recall that the latter model is the result of

decades of experimental and theoretical work in physics, explaining

the dynamics and interactions of all existing elementary particles. Let

us summarize the particle content (cf. Figure 10):

− leptons: electron (e), muon (µ), tauon (τ) and three neutrinos

(νe, νµ , ντ ).

− quarks: up (u), charm (c) and top (t), and down (d), strange (s) and

bottom (b), all coming in three colours.

− force carriers: photon (electromagnetic force), Z and W -boson

(weak nuclear force) and gluons (strong nuclear force).

− Higgs boson: giving mass to the Z and W -boson via the Higgs

spontaneous symmetry breaking.

These particles are the building blocks of well-known particles such as

the proton (built from two up quarks and one down quark), neutron

(built from two down quarks and one up quark), pion, et cetera.

Figure 10 The particle content of the Standard Model.
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Figure 11 β-decay is a noncommutative physical process.

We will not describe the full dynamics and interactions of the Standard

Model, as this can easily fill a textbook; we refer to [13] for a physicist’s

overview and to [1] for a mathematician-friendly introduction. Instead,

we single out a typical decay process described by the Standard Model,

and explain how it leads to a noncommutative structure.

We consider β− and β+-decay, which are two types of radioactive

decay. The first, β−-decay, is the emission of an electron (and an

electron-neutrino) by a neutron to form a proton (see Figure 11). This

process is a weak interaction process, replacing a down quark in the

neutron by an up quark to form a proton, at the same time emitting

a W -boson. Subsequently, this W -boson decays into an electron and

neutrino. Let us simplify this process by only considering what happens

to neutron and proton:

β− : n 7→ p,

β− : p 7→ p.

The second line simply states that β−-decay is not concerned with

decay of the proton, and leaves it as it is. Such a process calls for a

representation by matrices: if we denote the basis vectors in C
2 by p

and n,

p =

(
1

0

)
, n =

(
0

1

)
,

then we can represent

β− =

(
1 1

0 0

)
.



10 10

Walter D. van Suijlekom The spectral model of particle physics NAW 5/15 nr. 4 december 2014 249

Il
lu

st
ra

ti
o
n
:

Er
ic

k
Ve

rm
eu

le
n

(N
ew

Sc
ie

n
ti
st

)

Figure 12 The block matrices in C⊕M2(C)⊕M3(C) allows to distinguish three layers in
M × F .

The ‘reverse’ process is β+-decay, now a proton emits a positron (and

neutrino) to form a neutron (see Figure 11). Again, in terms of the above

basis vectors p and n we can represent β+ as a two-by-two matrix:

β+ =

(
1 0

1 0

)
.

The crucial observation is that the two matrices representing β− and

β+ do not commute:

β−β+ 6= β+β−,

as one can readily check.

It is exactly these two-by-two matrices that lead to the noncommu-

tative structure encountered in Example 3. In fact, the block matrices

in C⊕M2(C) are responsible for both the electromagnetic and the weak

interaction. Moreover, the strong interaction between the quarks and

their corresponding three colours is governed by three-by-three ma-

trices, which can be described in complete analogy with the above

description of β-decay. This results in the space of block matrices

VF = C⊕M2(C)⊕M3(C).

In the full model [7] one further restricts M2(C) to the quaternions,

but for the present illustrational purposes this point is irrelevant. By

considering these matrices as functions on the noncommutative space

F , we have essentially translated the noncommutativity of the above

physical processes into geometry. When combined as M × F with a

(space-time) manifoldM, the direct summands in VF each correspond

to a copy ofM, and form the domain of the electromagnetic, weak and

strong interaction, respectively (see Figure 12).

As in the toy models described before, the dynamics on this finite

noncommutative space F is governed by a symmetric matrix DF . If we

count the total number of leptons and quarks we come to a 96 × 96-

dimensional matrix which is filled with masses for the leptons and

quarks, and otherwise contains many zeroes. Now, the great advan-

tage of the noncommutative approach is that from this geometrical

data alone all bosons can now be derived, with a key role played by the

perturbation semigroup of Definition 4. In fact, much as the photon

was obtained in Example 11 by acting with Pert(C∞(M)) on the Dirac op-

eratorDM , extending this action to Pert(VF ) on that sameDM produces

the photon,W and Z-boson, and gluons.

And what is more, the action of Pert(VF ) on DF results in the Higgs

boson, much as in the toy model discussed before. This is a great

improvement over the usual formulation of the Standard Model, where

the Higgs field is introduced by hand. Also a new, yet undiscovered σ

particle appears, as in the toy model of the previous section. More-

over, the computation of the distances between the several layers of

the previous two subsections translate verbatim to the Standard Mod-

el, yielding a picture (Figure 12) of three layers of space-time which are

separated by a distance of 10−18m and 10−27m, respectively.

Remark 12.The noncommutative description of the Standard Model

was given in [7] (see also [12]). All mathematical details and nuances

can be found therein. The σ -field was discovered in [6], but already

tacitly present in [5]. A full mathematical description of it, including

the description of the perturbation semigroup was given in [8–9]. We

also refer to [20] and references therein.

Quantization of the theory on a lattice

In the previous sections we have sketched how the full Standard Mod-

el of particle physics can be derived from a noncommutative space,

using not more than basic linear algebra. Even though this is quite

an achievement, there is still the formidable problem to give a math-

ematically rigorous description of the quantization of the above sys-

tem. At present, the derivation of the spectral action functional for

the Standard Model, including e.g. the Higgs potential, is a mathe-

matical derivation. However, the translation of it to realistic quantum

particles and fields follows a more physics-style approach. It is clear

that in order to have a proper understanding of the Standard Model of

particle physics this aspect should be improved. It is the goal of my

Vidi-research project to take a step in this direction.

We will analyse the quantization of gauge fields — such as the elec-

tromagnetic field — on a discrete space instead of in the continuum.

That is, we replaceM by a lattice, construct the quantum theory there,

and then analyse the limit of small lattice spacing (Figure 13). The main

challenge is to do this in a mathematically rigorous way, for which we

intend to exploit the powerful functional analytical techniques coming

from noncommutative geometry. One of the intriguing links with the

above description of noncommutative finite spaces is that the replace-

ment of M by a lattice is very similar to analysing the structure of the

discrete spaces F using matrix algebra. In [17] we present a first ex-

ploration of this exciting interplay between noncommutative geometry,

lattice gauge theory and quantization. k
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Figure 13 Quantum gauge fields are first described on a lattice, after which one takes the
limit of small lattice spacing to analyse the quantum theory in the continuum.
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