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This Problem Section is open to everyone; everybody is encouraged to send in solutions and

propose problems. Group contributions are welcome.

For each problem, the most elegant correct solution will be rewarded with a book token worth

D 20. At times there will be a Star Problem, to which the proposer does not know any solution.

For the first correct solution sent in within one year there is a prize of D 100.

When proposing a problem, please either include a complete solution or indicate that it is

intended as a Star Problem. Electronic submissions of problems and solutions are preferred

(problems@nieuwarchief.nl).

The deadline for solutions to the problems in this edition is 1 March 2014.

Problem A (folklore, communicated by Jaap Top)

Does there exist an integern > 1 such that the set of leading digits of 2n,3n, . . . ,9n is equal to

{2,3, . . . ,9}?

Problem B (proposed by Bart de Smit and Hendrik Lenstra)

Rings are unital, and morphisms of rings send 1 to 1.

Let A and B be commutative rings. Suppose that there exists a ring C such that there are

injective morphisms A → C and B → C of rings. Show that there exists a commutative such

ring.

Problem C (proposed by Jinbi Jin)

Let C(R,R) denote the set of continuous maps from R to itself. A (not necessarily continuous)

map f : C(R,R) → C(R,R) is called good if it satisfies, for all s, t ∈ C(R,R), the identity

f (s ◦ t) = f (s)f (t),

where the product on the right hand side is the point-wise multiplication of maps.

− Find a non-constant good map f : C(R,R) → C(R,R).

− Show that f (exp) = 0 for all non-constant good maps f : C(R,R) → C(R,R). (Here, exp is

given by x 7→ ex .)

Edition 2013-2 We received solutions from Leon van den Broek (Nijmegen), Alex Heinis (Amster-

dam), Jos van Kan (Delft), Thijmen Krebs (Nootdorp), Javier Sánchez-Reyes (Castilla-La Mancha,

Spain) and Ángel Plaza (Las Palmas de Gran Canaria, Spain), and Robert van der Waall (Huizen).

Problem 2013-2A (based on a problem proposed by Gerard Renardel de Lavalette)

We have two hourglasses, A for a seconds and B for b seconds, where a and b are relatively

prime integers and 0 < a < b. Let t0 be an integer with t0 ≥ b + (
1
2a− 1)2. Show that A and B

can be used to identify the time t = t0 if the upper bulbs are empty at t = 0.

Remark. The original problem received from the proposer was to prove a slightly stronger result.

Letm be the remainder of b upon division by a. The original problem was to prove that for any

integer t0 > b +m(a−m)− a, the time t = t0 can be identified using A and B.

Solution We received only one correct solution, from Thijmen Krebs, who will receive the book

token. The following solution is based on that solution.

Let m be the remainder of b upon division by a. For any integer T that is a multiple of a or b,

we can use the following strategy:

− while t < T , turn each hourglass whenever it is empty;

− while t ≥ T , turn both hourglasses whenever at least one is empty.

If we apply this strategy to T = b, then we turn both hourglasses at the times t = b + km for

k = 0,1,2, . . ..
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b−m
a ) = b + (a−m), then we turn both hourglasses at the

times t = b + k(a−m) for k = 1,2,3, . . ..

In particular, all elements of the following set are measurable times:

S = {b + km : 0 ≤ k < a−m} ∪ {b + k(a−m) : 0 < k ≤m}.

As a and b are coprime, so are m and a, hence S contains an element of each residue class

modulo a. Moreover, the maximal element of S is b +m(a−m).

Before starting the strategy above, we can measure any non-negative integer multiple of a

seconds using A, while letting B stay empty. In particular, we can measure any time t0 ≥

b +m(a−m)− a + 1.

Finally, note m(a−m) ≤ (
1
2a)2, so b +m(a−m)− a + 1 ≤ b + (

1
2a)2 − a + 1 = b + (

1
2a− 1)2

and we can measure any time t0 ≥ b + (
1
2a− 1)2.

Problem 2013-2B (folklore, communicated by Jeanine Daems)

In a two-player game, players take turns drawing a number of coins from a pile that starts withn

coins. The first player takes at least one coin from the pile, but not all. In the subsequent turns,

each player takes at least one coin, and at most twice the number of coins taken in the previous

turn. The player who takes the last coin wins. For which numbers n can the first player win?

Solution We received correct solutions from Alex Heinis and Thijmen Krebs. The book token is

awarded to Alex Heinis. The game is known as Fibonacci Nim, and the first player can win for

those integers n > 1 that are not a Fibonacci number.

Let (Fk)k≥1 be the Fibonacci sequence: F1 = 1, F2 = 2 and Fk+2 = Fk+1 + Fk for k ≥ 1. The

proof uses Zeckendorf’s theorem: every positive integer can uniquely be written as the sum of

non-consecutive Fibonacci numbers. Let z be the function on the positive integers that assign

to m the smallest Fibonacci number occurring in the Zeckendorf decomposition ofm. E.g., we

can write 20 = 13 + 5 + 2 = F6 + F4 + F2 and z(20) = F2 = 2.

We define a position in this game to be a pair (m,d) where m is number of coins left on the

pile and d the maximal number of coins that may be taken (by the player who is to move). The

initial position is (n,n − 1) and the final positions are those of the form (0, d). Call a position

(m,d) ‘good’ if it is non-final and d ≥ z(m); call it ‘bad’ otherwise.

Lemma. Let (m,d) be a good position. There exists a move to a bad position.

Proof. Write m = Fk1
+ · · · + Fkr for the Zeckendorf decomposition, with ki ≥ ki+1 + 2. By

assumption, d is at least Fkr . Our move is to take exactly Fkr coins. The new position is

(m−Fkr ,2Fkr ). This is a bad position: in the case r = 1 it is even final, and otherwise it follows

from 2Fkr < Fkr−1
. �

Lemma. Let (m,d) be a non-final bad position. All moves lead to a good position.

Proof. Write Fk = z(m). By assumption we have d < Fk. Suppose we take x coins, for some

x ∈ {1, . . . , d}. Let t ≥ 0 be the even number such that Fk−t−2 ≤ x < Fk−t . Then

Fk − Fk−t < Fk − x ≤ Fk − Fk−t−2

hence

Fk−1 + Fk−3 + · · · + Fk−t+1 < Fk − x ≤ Fk−1 + Fk−3 + · · · + Fk−t−1,

so z(Fk − x) ≤ Fk−t−1, which is smaller than 2Fk−t−2 ≤ 2x. Note further that z(Fk − x) =

z(m− x). Hence (m− x,2x) is a good position. �

Together the lemmas show that the good positions are exactly the winning ones. The initial

position (n,n− 1) is good if and only if z(n) ≤ n− 1, i.e., if and only if n is not Fibonacci.
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Problem 2013-2C (proposed by Bas Edixhoven and Maarten Derickx)

Let ABCD be a convex quadrilateral inside a plane U in R
3. Suppose that ABCD is not a

parallelogram. Show that there exist a plane V in R
3 and a point P ∈ R

3 − (U ∪ V ) such that if

a light source is placed in P , then the shadow of ABCD on V is a square.

Solution We received solutions from Leon van den Broek, Alex Heinis, Jos van Kan, Javier

Sánchez-Reyes and Ángel Plaza, and Robert van der Waall. The book token goes to Jos van Kan.

The main idea of the solution is to pick the plane V and the point P in such a way that the

projection on V of the intersection of the lines AB and CD, and that of BC and AD is ‘at

infinity’. Some extra conditions on P related to the diagonals and consecutive edges will then

ensure that the projection of ABCD on V is a square.

If the lines AB and CD intersect, denote their intersection by X1. Similarly, if BC and AD

intersect, denote their intersection by X2.

We consider three cases, the first of which is the following.

Case 1. The lines AB and CD intersect, and so do BC and AD. Moreover, both of AC and BD

intersect the line X1X2.

First note that X1X2 does not intersect the quadrilateral ABCD, as ABCD is convex. Let Y1 be

the intersection of AC and X1X2, and likewise, let Y2 be the intersection of BD and X1X2.

Let W be a plane that has as intersection the line X1X2 with U . In particular, U 6= W . Let Γ1,

Γ2 be the circles in W with the segments X1X2, Y1Y2 as diameter, respectively. Let P be an

intersection of Γ1 and Γ2, and let V be any plane parallel toW such that the quadrilateralABCD

lies between V and W . This intersection exists as one of Y1, Y2 lies between X1 and X2, and

the other does not.

Then note that P does not lie in U , as the points X1, X2, Y1, Y2 are pairwise distinct, and that P

does not lie in V , as P lies inW , which is parallel to V . Hence P ∈ R
3 − (U ∪ V ).

Now let A0, B0, C0,D0 be the respective intersections of AP,BP,CP,DP with V . They exist, as

the given lines intersect in P withW , which is parallel to V . By construction of V , and as X1X2

does not intersect the quadrilateral ABCD, it now suffices to show that A0B0C0D0 is a square

in V .

Let l be a line in U , not equal to X1X2. Write P(l) for the unique plane through l and P , write

I(l) for the intersection line ofW with P(l), and write I0(l) for the intersection line of V with P(l).

(So for example, L0(AB) = A0B0.) As V and W are parallel, it follows that for all lines l, m in

U , the angle between I(l) and I(m) is equal to the one between I0(l) and I0(m). Note that a

square is a quadrilateral such that

− every two successive edges are perpendicular, and

− the diagonals are perpendicular.

Therefore, to show that A0B0C0D0 is a square, it suffices to show that the I(e) (with e an edge

or a diagonal of the quadrilateral ABCD) satisfy the above properties.

Now we simply note that

I(AB) = I(CD) = PX1, I(BC) = I(AD) = PX2,

and that

I(AC) = PY1, I(BD) = PY2,

so by construction of P , the quadrilateral A0B0C0D0 is a square, as desired.

For the remaining cases, we will only state them, and the corresponding construction of P , as

the proof (and the construction of V ) is done in the same way.

Case 2. The lines AB and CD intersect, and so do BC and AD. Moreover, at most one of AC

and BD intersects the line X1X2.

Note here that at least one of AC and BD intersects the line X1X2, as AC and BD intersect,

so exactly one of them intersects X1X2. We assume without loss of generality that AC and
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line AC intersects the segment BD, which is parallel to X1X2. Let W be any plane that has as

intersection the line X1X2 with U , and let Γ be the circle in W with diameter X1X2. Then we

take P to be an intersection of Γ with the line through Y perpendicular to X1X2.

Case 3. Exactly one of the pairs of lines (AB,CD) and (BC,AD) intersect.

We assume without loss of generality that AB and CD intersect, and let X denote this inter-

section. Let l be the line through X parallel to BC (hence also to AD). Then the lines AC and

BD both intersect l, as they intersect BC. Let Y1 and Y2 be their respective intersections. Then

X lies between Y1 and Y2, as for S the intersection of AC and BD, the line XS intersects the

segments BC andAD, which are parallel to l. LetW be any plane that has l as intersection with

U , and let Γ be the circle with diameter Y1Y2. Then we take P to be an intersection of Γ with the

line through X perpendicular to l.
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