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This Problem Section is open to everyone; everybody is encouraged to send in solutions and

propose problems. Group contributions are welcome.

For each problem, the most elegant correct solution will be rewarded with a book token worth

D 20. At times there will be a Star Problem, to which the proposer does not know any solution.

For the first correct solution sent in within one year there is a prize of D 100.

When proposing a problem, please either include a complete solution or indicate that it is

intended as a Star Problem. Electronic submissions of problems and solutions are preferred

(problems@nieuwarchief.nl).

The deadline for solutions to the problems in this edition is 1 September 2013.

Problem A (proposed by Gerard Renardel de Lavalette)

We have two hourglasses, A for a seconds and B for b seconds, where a and b are relatively

prime integers and 0 < a < b. Let t0 be an integer with t0 ≥ b + (
1

2
a− 1)2. Show that A and B

can be used to identify the time t = t0 if the upper bulbs are empty at t = 0.

Problem B (folklore)

In a two-player game, players take turns drawing a number of coins from a pile that starts with

n coins. The first player takes at least one coin from the pile, but not all. In the subsequent

turns, each player takes at least one coin, and at most twice the number of coins taken in the

previous turn. The player who takes the last coin wins.

For which numbers n can the first player win?

Problem C (proposed by Bas Edixhoven and Maarten Derickx)

Let ABCD be a convex quadrilateral inside a plane U in R
3. Suppose that ABCD is not a

parallelogram. Show that there exist a plane V in R
3 and a point P ∈ R

3 − (U ∪ V ) such that if

a light source is placed in P , then the shadow of ABCD on V is a square.

Edition 2012-4 We received solutions from Yagub Aliyev and Dursun Çalişkan (Baku), Charles

Delorme (Paris), Pieter de Groen (Brussels), Alex Heinis (Hoofddorp), Thijmen Krebs (Nootdorp),

John Simons (Groningen), Traian Viteam (Punta Arenas) and Robert van der Waall (Huizen).

Problem 2012-4/A Letϕ(n) denote the Euler totient function. Find the set of limit points of the

sequence (ϕ(n)/n)∞n=1.

Solution We received solutions from Yagub Aliyev and Dursun Çalişkan, Charles Delorme, Pieter

de Groen, Alex Heinis, Thijmen Krebs, Traian Viteam and Robert van der Waall. The following

solution is based on that of Thijmen Krebs. The book token goes to Thijmen Krebs.

We start by noting thatϕ(n) = n
∏

p|n(1− 1

p ) for all positive integers n.

Note that the set L of limit points of the sequence must lie inside the closed interval [0,1] ⊆ R,

as the sequence itself lies inside [0,1]. We show that L = [0,1].

Let P = {p1, p2, . . .} (with p1 < p2 < · · ·) denote the set of primes. Then the subsequence
(

ϕ(pn)/pn
)∞
n=1 =

(

pn−1

pn

)∞
n=1

has limit 1, so 1 ∈ L.

Now let x ∈ [0,1). To show that x ∈ L, it suffices to show that for all ǫ > 0, there exists

a positive integer n such that |x −ϕ(n)/n| < ǫ. We assume without loss of generality that

x + ǫ < 1. Hence there exists a ps ∈ P with x + ǫ < 1− 1

ps
and ǫ > 1

ps−1
. As

∏∞
i=s (1− 1

pi
) = 0,

it follows that there is an integer t ≥ s such that

t
∏

i=s

(1− 1

pi
) ≥ x +

1

ps−1
>

t+1
∏

i=s

(1− 1

pi
) =: α,
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x + ǫ > x +
1

ps−1
> α ≥ (x +

1

ps−1
)(1− 1

pt+1
)

> (x +
1

ps−1
)(1− 1

ps
) = x +

1

ps
(1− x) > x.

This completes the proof as α =ϕ(n)/n, where n =
∏t+1
i=s pi. �

Remark Thanks to Robert van der Waall for pointing out a reference for this problem, namely:

A. Schinzel, W. Sierpinski, Bull. Acad. Polon. Sci., Cl. III, Vol. 2 (1954), pp 463–466, and Vol. 3

(1955), pp. 415–419.

Problem 2012-4/B Find nonzero integers c0, c1, c2, c3 such that the sequence given by a1 = 1,

a2 = 12, a3 = 68, a4 = 504 and

an+4 = c0an + c1an+1 + c2an+2 + c3an+3 (n > 0)

consists of positive terms and has the property that am divides an wheneverm divides n.

Solution We received solutions from Charles Delorme, Alex Heinis, Thijmen Krebs and John

Simons. The solution below is based on the solution of Thijmen Krebs. The book token goes to

Alex Heinis.

Thanks to Frits Beukers for providing inspiration for this problem.

Let (Fn)n≥1 be the Fibonacci sequence, which is the sequence defined by F1 = F2 = 1 and

Fn+2 = Fn+1 + Fn (n > 0). Let ϕ =
1

2

(

1 +
√

5
)

be the positive root of X2 − X − 1 = 0 and let

ψ = 1−ϕ be the other one. Then Fn = (ϕn −ψn) /
√

5. The Fibonacci sequence is a divisibility

sequence: ifm divides n, say n = km, then Fm divides Fn because the quotient

Fn

Fm
=
ϕkm −ψkm
ϕm −ψm =ϕ(k−1)m +ϕ(k−2)mψm + · · · +ψ(k−1)m

is an algebraic integer (because ϕ and ψ are, as they are the roots of the monic polynomial

X2 − X − 1) that is a rational number. Therefore, it is an integer, i.e., Fm divides Fn. We are

ready to state our claim: the sequence

an =
F3nF2n

2Fn
=

1

2
√

5

(

ϕ3n −ψ3n
)

(ϕn +ψn)

has positive terms, has the correct initial values, and satisfies the divisibility condition.

− Each an is a positive integer. Indeed, an > 0 is clear, and we know (by the divisibility

property of Fibonacci proven above) that 2 = F3 divides F3n and Fn divides F2n. The initial

values are a1 = 1, a2 = 12, a3 = 68 and a4 = 504.

− If k is odd, then an divides akn. Indeed, we already know that F3n/2 divides F3kn/2 and we

can compute that F2n/Fn divides F2kn/Fkn:

F2kn/Fkn

F2n/Fn
=
ϕkn +ψkn

ϕn +ψn
=

k−1
∑

i=0

(−1)iϕ(k−1−i)nψin

is a rational algebraic integer, hence an integer.

− If k is even, then an divides akn. Indeed, k being even implies 3kn being divisible by 6n.

So F6n divides F3kn and Fkn divides F2kn, so by virtue of

akn

an
=
F3knF2kn/Fkn

F3nF2n/Fn
=
F3kn

F6n
· F2kn

Fkn
· F6nFn

F3nF2n

it suffices to show that F3nF2n divides F6nFn. To prove this, one notes that their quotient

equalsϕ2n +ϕnψn +ψ2n, which is a rational integer.

This concludes the proof of the claim.
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computing that

an =
1

2
√

5

(

ϕ3n −ψ3n
)

(ϕn +ψn) =
1

2
√

5

(

(

ϕ4
)n

+
(

ϕ3ψ
)n
−
(

ϕψ3
)n
−
(

ψ4
)n
)

,

and that

(X −ϕ4)(X −ϕ3ψ)(X −ϕψ3)(X −ψ4) = X4 − 4X3 − 19X2 − 4X + 1.

These two equations imply that

an+4 = 4an+3 + 19an+2 + 4an+1 − an.

We conclude that c0 = −1, c1 = 4, c2 = 19, c3 = 4 satisfy the conditions.

Remark Alternatively, one could try to find a sequence of the form

an =
αn − βn
α− β · γ

n − δn
γ − δ .

One deduces from the values ofa2,a3 anda4 thatαγ,αδ,βγ,βδare the roots of the polynomial

(X −αγ)(X −αδ)(X − βγ)(X − βγ) = X4 − 12X3 + 51X2 − 300X + 625.

So we could guess that c0 = −625, c1 = 300, c2 = −51 and c3 = 12 satisfy the conditions. They

do, but the proof of this statement is slightly more technical than the proof above. (Although

the main ideas coincide.)

Problem 2012-4/C A circle in R
2 is called Apollonian if its centre coordinates and radius are

all integers. Do there exist eleven distinct Apollonian circles A,B,C, T1, . . . , T8 such that for

i = 1, ...,8, the circle Ti is tangent to A, B, and C?

Solution We received solutions from Charles Delorme, Alex Heinis and Thijmen Krebs. The

solution below is based on all of their solutions. The book token goes to Charles Delorme.

The answer to the problem as stated is trivially affirmative, as the circles Cr with centre (r ,0)

and radius r (for r ∈ Z) are all tangent to each other at the origin. We therefore added the

originally-intended extra requirement that the centres of the circles A, B and C not be collinear

in the previous (March) issue. We will show that this still allows many examples. It suffices to

show the existence of rational, rather than integral, solutions, as we may multiply by a common

denominator in the end.

One way to find examples is to first look for degenerate cases, where some of the circles are

lines; then inversion in any circle with rational radius and rational centre P not lying on any of

the lines and circles, yields a non-degenerate example as desired, provided that P has rational

distance to all the lines. For example, take the configuration depicted below, where the circles

A and B have centres (±b,0) and radius r , the (degenerate) circleC is given byy = 0, while two

A B

C
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(degenerate) circles are given by y = ±r for appropriate a,b, c, d, r . Assuming r > b > a > 0,

it is not hard to find that the tangency conditions are equivalent to the equalities a2 + b2 = r2

and rd = ab and 2rc = a2. The shown figure is for the Pythagorean triple (a,b, r ) = (3,4,5),

which determines c = 9/10 and d = 12/5.

After inversion, this yields a configuration with eleven circles as required, with several points

where three circles are tangent to each other. There are also configurations where no three

circles are concurrent. One example is depicted below, with the centre (x,y) = (a/d,b/d) and

the radius r = c/d for each circle as in the following table.

a b c d

A 0 0 1 1

B 560 0 1649 1551

C 0 420 949 851

T1 40 30 7 43

T2 −40 −30 7 57

T3 1200 −49 210 991

T4 −1200 49 210 1411

T5 −49 1200 280 921

T6 49 −1200 280 1481

T7 21 28 120 85

T8 21 28 120 155

To find this example, the equations expressing tangency were simplified by the additional

requirements that the centres P , Q and R of the circles A, B and C form a right angle at P ,

that the circles A and B intersect on the line PR, and that the circles A and C intersect on the

line PQ. We leave it to the reader to verify that this implies that the entire picture is invariant

under the composition of inversion with respect to A and reflection in P . Hence, the circles

T1, ..., T8 split up into four pairs, where each circle in a pair can be obtained from the other by a

homothety with respect to P . Since P is chosen to be the origin, this is clearly reflected in the

table.

P Q

R

A

B

C


