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This Problem Section is open to everyone; everybody is encouraged to send in solutions and

propose problems. Group contributions are welcome.

For each problem, the most elegant correct solution will be rewarded with a book token worth 20

Euro. At times there will be a Star Problem, to which the proposer does not know any solution.

For the first correct solution sent in within one year there is a prize of 100 Euro.

When proposing a problem, please either include a complete solution or indicate that it is

intended as a Star Problem. Electronic submissions of problems and solutions are preferred

(problems@nieuwarchief.nl).

The deadline for solutions to the problems in this edition is 1 March 2013.

Problem A (proposed by Jan Turk)

Let φ(n) denote the Euler totient function. Find the set of limit points of the sequence(
φ(n)/n

)∞
n=1

.

Problem B

Find nonzero integers c0, c1, c2, c3 such that the sequence given by a1 = 1, a2 = 12, a3 = 68,

a4 = 504, and an+4 = c0an + c1an+1 + c2an+2 + c3an+3 (n > 0)

consists of positive terms and has the property that am divides an wheneverm divides n.

Problem C (proposed by Johannas Winterink)

A circle in R
2 is called Apollonian if its centre coordinates and radius are all integers.

Do there exist eleven distinct Apollonian circlesA, B, C, T1, . . . , T8 such that for i = 1, . . . ,8, the

circle Ti is tangent to A, B, and C?

Edition 2012-2 We received solutions from Wouter Cames van Batenburg (Leiden), Cor Hurkens

(Eindhoven), Thijmen Krebs (Nootdorp), José H. Nieto (Maracaibo) and Hans Zantema (Eind-

hoven).

Problem 2012-2/A Let P and Q be distinct points in the plane. Let n ≥ 2. Assume n distinct

lines through P but not through Q are given, as well as n distinct lines through Q but not

through P . Let T be a collection of 2n intersection points of these lines. Suppose that the

(unoriented) angle between the lines RP and RQ is the same for all R in T , and not a multiple

of 1

4
π . Show that T can be partitioned into subsets of at least three elements each, such that

every subset consists of the vertices of a regular polygon.

Rectification. The common angle in this problem should not be a multiple of π/4. (Thanks to

Thijmen Krebs for pointing this out.)

Solution We received a correct solution from Thijmen Krebs.

All angles are oriented angles modulo π , unless stated otherwise. Let α be the unoriented

angle modulo π of the common angle of the ∠PRQ, where R ∈ T .

Observation 1. Every line through P (resp.Q) contains exactly two points of T .

Proof. Let L be a line through P . As Q is not on this line, there is a unique isosceles triangle

with base inside L, top Q, and base angles α. Hence there are at most two points of T on any

given line through P . But since we have n lines going through P , and #T = 2n, it must follow

that every line must contain exactly two points of T . The same argument holds forQ. �

Observation 2. The set T is a subset of the union of two distinct circles intersecting at P andQ.
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R ∈ T such that ∠PRQ = α lies on a circle Γ+ containing P andQ, and that the subset T− of T

consisting of the points R ∈ T such that ∠PRQ = −α also lies on a circle Γ− containing P and

Q. Moreover, these circles are distinct since α 6= 1

2
π by assumption. �

We now define two maps fP , fQ : T+ → T− as follows. LetR ∈ T+. Then fP (R) (resp. fQ(R)) is the

unique intersection point of the lineRP (resp. RQ) with Γ− not equal to P (resp.Q). This map is

well-defined, as for R ∈ T+, we have ∠PfP (R)Q = ∠PfQ(R)Q = −α, hence fP (R), fQ(R) ∈ T−

by Observation 1.

Observation 3. The maps fP and fQ are bijections. In particular, #T+ = #T− = n.

Proof. We simply note that the inverse is given by sending R ∈ T− to the unique intersection

point of the line RP (resp. RQ) with Γ+ not equal to P (resp.Q). �

Observation 4. The maps f−1
P fQ and fQf

−1
P are rotations by 4α (as an oriented angle modulo

2π) on T+ and T−, respectively (with centres those of Γ+ and Γ−, respectively).

Proof. Let R ∈ T+. Then ∠PRQ = ∠QfQ(R)P = α, it follows that ∠RPf−1
P fQ(R) = ∠RPfQ(R) =

2α. Hence if C+ is the centre of Γ+, then ∠RC+f
−1
P fQ(R) = 4α, as an oriented angle modulo 2π .

The same argument works for fQf
−1
P . �

Now we note that the orbits of T+ (resp. T−) under the action of f−1
P fQ (resp. fQf

−1
P ) all have

the same length by the above, which hence dividesn, so it follows that f−1
P fQ and fQf

−1
P have

order dividing n. Hence 4nα = 0 modulo 2π , so α = 0 modulo π/2n. As we assumed that

α was not a multiple of 1

4
π , it follows that orbits of length at most 2 cannot occur. Orbits of

higher length are sets whose vertices form a regular polygon with at least three vertices, so we

are done.

Problem 2012-2/B Show that there exist an n ≥ 1, a polynomial P ∈ Z[X,Y1, . . . , Yn] and an

infinite set S of positive integers such that the set

{
(y1, . . . , yn) ∈ Z

n : P (k,y1, . . . , yn) = 0
}

is empty for all k < 0 and has precisely k elements for all k ∈ S.

Solution We received a correct solution from Thijmen Krebs.

An example can be deduced from Jacobi’s four-square theorem. It states that for each positive

integer p, the number of solutions (y1, y2, y3, y4) ∈ Z
4 to

y2
1 +y2

2 +y2
3 +y2

4 = p

is r4(p) = 8
∑
d∈D d, whereD is the set of divisors of p that are not multiples of 4. In particular,

if p is prime we have r4(p) = 8(p + 1).

Set n = 4 and let P ∈ Z[X,Y1, Y2, Y3, Y4] be the polynomial

P = 8(Y 2
1 + Y 2

2 + Y 2
3 + Y 2

4 + 1)−X.

Define S = {8(p + 1) : p prime}. The equation P (k,y1, y2, y3, y4) = 0 has no solutions for

k < 0. For k = 8(p + 1) ∈ S the equation reduces to y2
1 +y2

2 +y2
3 +y2

4 = p, which has r4(p) = k

solutions.

Problem 2012-2/C Is it possible to tile a 30 by 30 square grid using the following blocks?

2

The same argument works for fQf
−1
P . 

Now we note that the orbits of T+ (resp. T−) under the action of f−1
P fQ (resp.

fQf
−1
P ) all have the same length by the above, which hence divides n, so it follows

that f−1
P fQ and fQf

−1
P have order dividing n. Hence 4nα = 0 modulo 2π, so α = 0

modulo π/2n. As we assumed that α was not a multiple of 1
4π, it follows that orbits

of length at most 2 cannot occur. Orbits of higher length are sets whose vertices
form a regular polygon with at least three vertices, so we are done.

2. 2012-2/B

Show that there exist an n ≥ 1, a polynomial P ∈ Z[X,Y1, . . . , Yn] and an infinite
set S of positive integers such that the set


(y1, . . . , yn) ∈ Zn : P (k, y1, . . . , yn) = 0



is empty for all k < 0 and has precisely k elements for all k ∈ S.
We received a correct solution from Thijmen Krebs.
An example can be deduced from Jacobi’s four-square theorem. It states that

for each positive integer p, the number of solutions (y1, y2, y3, y4) ∈ Z4 to

y21 + y22 + y23 + y24 = p

is r4(p) = 8


d∈D d, where D is the set of divisors of p that are not multiples of 4.
In particular, if p is prime we have r4(p) = 8(p+ 1).

Set n = 4 and let P ∈ Z[X,Y1, Y2, Y3, Y4] be the polynomial

P = 8(Y 2
1 + Y 2

2 + Y 2
3 + Y 2

4 + 1)−X.

Define S = {8(p + 1) : p prime}. The equation P (k, y1, y2, y3, y4) = 0 has no
solutions for k < 0. For k = 8(p+1) ∈ S the equation reduces to y21+y22+y23+y24 = p,
which has r4(p) = k solutions.

3. 2012-2/C

Is it possible to tile a 30 by 30 square grid using the following blocks?

We received correct solutions from Wouter Cames van Batenburg, Cor Hurkens,
Thijmen Krebs, José H. Nieto, and H. Zantema. The book token goes to José
H. Nieto.

Solution We received correct solutions from Wouter Cames van Batenburg, Cor Hurkens, Thijmen

Krebs, José H. Nieto and Hans Zantema. The book token goes to José H. Nieto.
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3

There exists a tiling as desired. In fact, we can already tile a 10× 10 grid.

Note that we do not even need both types of Z-tiles.
More generally, an n×m grid can be tiled with the given pieces if and only if n

and m are at least 4, nm is divisible by 4, and (n,m) is not (6, 6), (6, 10), or (10, 6).Note that we do not even need both types of Z-tiles.

More generally, an n ×m grid can be tiled with the given pieces if and only if n and m are at

least 4, nm is divisible by 4, and (n,m) is not (6,6), (6,10) or (10,6).


