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The interaction of geometry and analysis
in Henri Poincaré ’s conceptions

Henri Poincaré had many interests, both inside and outside science. His special attention in this
was devoted to the interaction between different fields of knowledge. In this article Ferdinand
Verhulst goes into the interaction between mathematical disciplines, where he concentrates
on geometry and analysis.

To appreciate the enormous amount of scien-
tific results obtained by Henri Poincaré (1854–
1912), it helps to realise how diverse and im-
portant the various influences were on the ac-
tivities of his mind. His talents were both in
the humanities and in science. When he was
young he wrote hundreds of letters to his fam-
ily and friends, mixing them with his own po-
etry; he got honourable mentions for his es-
says at school, and he also wrote a novel. In
psychology, his observations of how the hu-
man mind works to create and invent became
textbook accounts. Later in life he became
known to the general public because of his
philosophical essays. In science, his inter-
ests were in geology, physics and astronomy,
and of course mathematics. All these fields
influenced his ideas and work. It is not sur-
prising that also in mathematics his creative
attention was directed at a great many differ-
ent topics. In this article we will be concerned
with two mathematical disciplines, geometry
and analysis, the historical development of
their interaction and their role in Poincaré’s
mathematics.

Geometry and the rise of modern science
The rise of modern science in the seventeenth
century cannot be dissociated from mathe-
matical thinking and the mathematisation of

the description of natural phenomena, called
mathematical modeling. The mathematical
thinking and writing in that period had a
strong geometrical flavour. The Principia [11]
of Isaac Newton (1643–1727) is not only full of
geometric arguments and pictures, but con-
tains actually many geometric theorems. A
similar characterization applies to the funda-
mental treatise by Christiaan Huygens (1629–
1695) Traité de la lumière [6]. Many exam-
ples of geometric reasoning can be found in
the work of other prominent scientists, for in-
stance Johann Bernoulli (1667–1748).

Although the dominance of traditional ge-
ometric formulations posed a certain restric-
tion, modern science started to develop.
Poincaré notes that with Newton, a change
of language took place, which enabled ‘natu-
ral philosophers’ to expand science dramat-
ically. Generalization became then possible
which had not been guessed before:

“When Kepler’s laws were replaced by
Newton’s, one knew only elliptic motion. Re-
garding this motion, the two laws differ in
form only, going from one to the other is sim-
ply by differentiation. From Newton’s laws,
however, one could by immediate generaliza-
tion deduce all perturbation effects in celes-
tial mechanics as a whole. If, on the other
hand, one would have kept the formulation

of Kepler, one would not have considered the
orbits of perturbed planets, these complicat-
ed curves of which nobody has written down
the equations.” [17, essay ‘L’analyse et la
physique’]

In Kepler’s laws one saw the geometrical
and dynamical movements of the planets in
elliptical orbits. After the formulation of

Newton’s laws one started to use differ-
ential equations which enabled us to de-
scribe much more complicated gravitational
systems than the two-body problem. It is the
change of languages that opens up new gen-
eralizations which had not been seen before.

Two mathematical cultures
The beginning of the nineteenth century saw
the continuation of two cultures, one based
on the impressive success of analytic compu-
tations and one in which geometric thinking
reached a new level. As a striking represen-
tative of the analytic culture, Lagrange was
very influential. We will discuss Riemann as
a representative of geometric thinking.

Lagrange
The use of the analytic ideas of Newton was
not always straightforward in practical prob-
lems. A simple example is the differentiation
of the product of two functions, say f (x)g(x).
One can do this by using the definition of
differential quotient, but using Leibniz’s rule
of differentiation d/dx(fg) = f ′g + fg′

leads quickly to a correct result. The enor-
mous amount of calculations in celestial me-
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chanics and other parts of mechanics in the
eighteenth century required such algorithmic
rules. To calculate the ephemerides of comets
and planets it was essential to have algo-
rithms and more or less ‘automatic compu-
tation’ at one’s disposal. A rather extreme
example is found in the work of Joseph-Louis
Lagrange (1736–1813). Lagrange writes for in-
stance in the introduction to his Mécanique
Analytique [8]:

“One will not find figures in this work. The
methods that I explain therein require neither
geometric nor mechanical constructions or ar-
guments, but only algebraic operations forced
by regular and uniform steps.”

This is clearly seen by Lagrange as an ad-
vantage, a way to reach results quickly, and
not as a restriction. Are the two volumes
of the Mécanique Analytique, where all ge-
ometry has been weeded out, still of impor-
tance? Remarkably enough, the answer is
‘yes’. Apart from treating specific problems in
mechanics, the general equations of dynam-
ics are derived, the theory of multipliers for
extreme values is formulated, the basic ideas
of averaging normalization are described in a
clear way.

There is no explicit geometry that would
have added a synthetic element to the calcu-
lations, but the wealth of ideas makes up for
this.

The school of Riemann
The successes of analysis in dynamics, in par-
ticular in celestial mechanics, had its coun-
terpart in applied mathematics in Germany,
but meanwhile geometric thinking went there

Bernhard Riemann (1826–1866)

its autonomous course. This becomes clear
in the mathematics of Bernhard Riemann
(1826–1866). Poincaré notes in La valeur de
la science [17]:

“Among the German mathematicians of
this century, two names are particularly fa-
mous; these are the two scientists who
have founded the general theory of functions,
Weierstrass and Riemann. Weierstrass re-
duces everything to the consideration of se-
ries and their analytical transformations. To
express it better, he reduces analysis to a
kind of continuation of arithmetic; one can go
through all his books without finding a pic-
ture. In contrast with this, Riemann calls im-
mediately for the support of geometry, and
each of his concepts presents an image that
nobody can forget once he has understood its
meaning.” [17, essay ‘L’intuition et la logique
en mathématiques’]

These delimitations are not meant to sug-
gest one particular way of mathematical think-
ing. A few lines later, Poincaré writes:

“The two types of spirits are equally nec-
essary for the progress of science. Both the
logicians [doing analysis by successive steps]
and the intuitives [doing synthetic geomet-
rics] have done great things which the others
could not have achieved. Who would dare to
say that he would have preferred that Weier-
strass had never written a word, or that there
had not been a Riemann? So, analysis and
synthesis both have their legitimate part to
play.”

It is interesting to consider Riemann’s pa-
pers in the light of Poincaré’s remarks.

At the occasion of his ‘Habilitation’ in
Göttingen (1854), Riemann lectured on the
foundations of geometry [20], see also [19].
Riemann starts with experience and notes
that the Euclidean foundations are not nec-
essary, but that they have an acceptable cer-
tainty. He formulates a research plan for n-
dimensional manifolds and spaces. Weyl [19]
links these considerations with later results
in geometry, for instance by Klein, and with
general relativity.

The collected works [19] starts with a trea-
tise on the foundations of complex func-
tion theory, without figures but, as noted by
Poincaré, “each of its concepts presenting
an image”. The interpretation of a complex
function in the neighbourhood of a singulari-
ty plays a prominent part.

A long article on Abelian functions in [19]
is written in the same style, it contains four
figures. This long article discusses the prob-
lems of many-valued functions in the context
of results from the analysis situs of Leibniz.

Comparing the approach of Riemann and
Lagrange, it is interesting to consider La-
grange’s theory of analytic functions [9]. The
book consists of three parts with the first part
discussing series expansions for implicitly de-
fined real functions. The second part has a
strong geometric flavour; it applies the pre-
ceding theory to obtain tangents of curves,
curvature calculations and contact problems.
There is also an extension to the theory of
extreme values and variational calculus. In
the third part, finally, the theory of series is
applied to problems of mechanics.

In the book of Lagrange on analytic func-
tions we find many calculations to solve a
number of particular problems which in the
second part are associated with classical ge-
ometry. In Riemann’s articles, analysis and
geometry go hand in hand producing new in-
sights in both fields; an important example is
his approach to the many-valuedness of ana-
lytic functions near a singularity by introduc-
ing a structure of surfaces around it.

Felix Klein
A prominent member of the school of Rie-
mann was Felix Klein (1849–1925). For illus-
tration, we discuss his lectures on ordinary
differential equations that started on April 24,
1894 and ended on August 7, 1894, taking
place during the so-called ‘Sommersemester’
in Göttingen. They have been worked out by
E. Ritter [7] in 524 handwritten reproduced
pages with nice illustrations.

In the preface Klein notes that the present
lectures are a natural sequel to his earlier lec-
tures on hypergeometric functions. He also

Felix Klein (1849–1925)
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Henri Poincaré , student at the École Polytechnique

mentions that in contrast to other authors he
will discuss the global behaviour of solutions,
but that this field is so rich that he has to re-
strict himself to second order linear ordinary
differential equations with three singularities.
The emphasis in the discussion is on algebra-
ic and transcendental properties of differen-
tial equations, oscillation theorems and au-
tomorphic functions. The treatment is inter-
esting but was already unusual at that time
regarding ordinary differential equations as it
is not so much concerned with explicit solu-
tions, but focuses on problems of complex
function theory like the role of singularities,
Riemann surfaces and uniformisation ques-
tions.

After a detailed discussion of algorithmic
and synthetic research, Klein states:

“Nowadays one uses everywhere in math-
ematics again the synthetic method along
with the algorithmic method and one can dis-
tinguish the problems in the separate disci-
plines by their treatment according to one or
the other. I believe one can weigh the value
of both methods against each other: with the
algorithmic method, if it can be applied at all,
one obtains certainly something, even gener-
al comprehensive theorems. This is then not
so much the merit of the individual mathe-
matician as he works with the capital of his
predecessors, with the supply of ideas which
earlier mathematicians have assembled by
the creation of the algorithm. It is differ-
ent with the synthetic method; there every-
thing comes down to having the correct, new
thought. There, one does not know whether

one finds something, there one has to create
one’s own path. What one achieves is maybe
little, but to a large extent the property of the
researcher. The algorithm gives progress in
objective respect but not subjectively. One
is not so much forced to think independent-
ly. The algorithm looks like travelling by train
that goes fast and far, but through cultivated
landscapes only, the synthetic method is of
the settler who with his axe and much trouble
penetrates into the jungle and conquers new
domains of culture. In any case the second
activity must precede the first.

”Klein concludes that in his lectures he will
use both algorithmic and synthetic approach-
es. Algorithmic he considers the treatment
of algebraic integrability, including algebra-
ic and transcendental groups, and the theory
of Lamé polynomials. Synthetic is the dis-
cussion of the oscillation theorem (Sturm–
Liouville theory) and the theory of automor-
phic functions, this last chapter taking near-
ly hundred pages. It is concerned with the
properties of analytic continuation, the rela-
tion with the geometry of Riemann surfaces
and uniformisation questions.

The mathematical education of Poincaré
In the nineteenth century, geometry in France
consisted of the classical Euclidean geome-
try, supplemented by analytic and projective
geometry, including its applications such as
descriptive geometry. Henri Poincaré, eigh-
teen years old, enrolled in the special course
that would prepare him for the entrance ex-
aminations of the ‘Grandes Écoles’, the École
Normale Supérieure and the École Polytech-
nique. Before he began these studies, he
plunged into the mathematics textbooks of
the time. According to [1] these included La
Géométrie by Eugène Rouché, L’Algèbre by
Joseph Bertrand, Cours d’Analyse de l’École
Polytechnique by Jean-Marie Duhamel and La
Géométrie Supérieure by Michel Chasles. The
last two books on the list are particularly
remarkable. Jean Duhamel’s calculus book
was a textbook for the École Polytechnique,
where Duhamel (1797–1872) himself lectured.
The geometry book of Michel Chasles is on
advanced geometry while proposing a pro-
nounced philosophy.

Michel Chasles advocates a balance
Michel Chasles’s geometry text emphasized
the complementary roles of analysis and ge-
ometry; it was original, difficult, questioned
by a number of colleagues, yet written in an
engaging style. Chasles (1793–1880) formu-
lated his approach in his 1846 inaugural lec-

Michel Chasles (1793–1880)

ture for the geometry chair at the Sorbonne as
follows (see also [4]):

“If one knows that the subject of geometry
is the measure and characteristics of space,
then one knows how extended this field is,
and that one does not even know where the
boundaries of this domain end. For space that
one imagines changes shape infinitely often,
and the features of each of the forms arising in
nature or of those the human spirit can imag-
ine, are themselves extremely numerous, one
can even say inexhaustible.”

Chasles continued by proposing a dras-
tic change in the way geometry was under-
stood and practised at the beginning of the
nineteenth century, for instance under the
influence of Lagrange. It emphasized for-
mulas over pictures, analysis over synthesis.
Chasles, in contrast, has this to say:

“One can see the respective advantages
of Analysis and Geometry: the former leads
with the miraculous mechanism of its trans-
formations quickly from the starting point to
the point to be reached, but often without re-
vealing the road that was travelled or the sig-
nificance of the numerous formulas that have
been used. Geometry on the other hand de-
rives its inspiration from thoughtful consider-
ation of things and from the ordered arrange-
ment of ideas. It is obliged to discover in a nat-
ural way the statements that Analysis could
neglect and ignore.”

When Chasles’s La Géométrie Supérieure
appeared in 1852, his vision of the importance
of geometry, using of course analysis as a sup-
port, was rather revolutionary in France.
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Jean-Gaston Darboux (1842-1917)

It seems more than likely that it became an
important influence on Henri’s way of think-
ing, especially considering the fruitful combi-
nation of analysis and geometry that is typi-
cal of his methods, for instance in the quan-
titative and qualitative theory of dynamical
systems that he would later develop. Jean-
Gaston Darboux (1842–1917) wrote his doc-
toral thesis under the supervision of Michel
Chasles, Darboux was one of the supervi-
sors of the doctoral thesis of Henri Poincaré.
The view of Chasles is mirrored in [17, essay
‘L’analyse et la physique’], where Poincaré
writes about the analytic and geometric im-
ages evoked by the Laplace equation:

“Thanks to these images, one can see at
a glance what pure deduction will show only
after successive steps.”

Examples of fruitful interaction
We will discuss now a few examples of the
interaction of geometry and analysis in the
mathematics of Poincaré. More details and
other examples can be found in [5] and [21].

Automorphic functions
The integration of differential equations leads
more often than not to solutions that are de-
fined implicitly. We are then faced with an
inversion problem to find the explicit solu-
tion. Consider for instance a simple implicit
relation in complex variables: w = z2 with
inversion z =

√
w; this leads to the well-

known problem that, starting, say on the re-
al axis, and moving on a circle around the
origin (the singularity), will produce a differ-

ent value when arriving again at the real ax-
is. An ingenious solution for the problem
of many-valuedness to obtain unique contin-
uation of such a function was proposed by
Riemann. Using several surfaces when mov-
ing around the singularity and joining them,
one obtains the so-called Riemann surface.
In the example of the quadratic equation
above, one needs two surfaces to be joined.
For more general algebraic implicit equations,
one needs for such an inversion a finite num-
ber of surfaces and so a more complicated
Riemann surface.

The German mathematician Fuchs (1833–
1902) considered a second order, linear, ordi-
nary differential equation of the form

y′′ +A(z)y′ + B(z)y = 0

with A and B holomorphic functions of the
complex variable z in a region S. There are
two independent solutions y1(z) and y2(z)

and Fuchs started to consider the ratio η =

y1/y2. He was interested in the behaviour of
the solutions near singular points of A and B
and performed analytic continuation of y1(z)

andy2(z) along a closed curve around such a
singularity and inversion of the function η(z).
This led him to consider a certain linear trans-
formation of η and, more in general, to look
for functions that are invariant under a sub-
stitution of the form

z → az + b
cz + d

,

with complex coefficients. So we have

f
(
az + b
cz + d

)
= f (z).

The ratio of the solutions η should be invari-
ant under these linear substitutions which
is a more general property than periodicity.
This idea of Fuchs inspired Poincaré to put
the idea at a higher level of abstraction. He
called the functions with this property Fuch-
sian, they are now called automorphic. For
his subsequent analysis, Poincaré had to dis-
tinguish between continuous and discontin-
uous transformation groups. He understood
by a flash of intuition that the continuation of
these complex functions, the use of Riemann
surfaces and transformations in the complex
plane correspond with geometric structures
that can be understood only in terms of non-
Euclidean geometry. In fact, until Poincaré
looked at these problems, non-Euclidean ge-
ometry was considered as an artificial play-

ground without much relevance to mathemat-
ics in general.

The theory led Poincaré to the formula-
tion of uniformisation problems. The inte-
gration of algebraic functions, also obtained
from differential equations, and their analytic
continuations produce multi-valued analytic
functions. Uniformisation of such functions
corresponds with obtaining a parametrisa-
tion by single-valued meromorphic functions.
The development has led to the relation be-
tween complex function theory and hyperbol-
ic geometry, and also to many results in the
study of quadratic forms and arithmetic sur-
faces. The theory of uniformisation contains
still many fundamental open questions.

Balayage for gravitational potential problems
When considering the Newtonian attraction
properties of bodies with a given distribution
of mass, one is led to a study of the Laplace
and Poisson equations (see Théorie du poten-
tiel Newtonien [16]). One of the basic prob-
lems is to solve the Laplace equation

∆V =
∂2V
∂x2 +

∂2V
∂y2 +

∂2V
∂z2 = 0 in D,

with D ∈ R3 a bounded domain. If the
distribution of mass is given by a function
ρ(x,y, z), the corresponding potential is de-
scribed by the Poisson equation

∆V = ρ.

A twice differentiable function satisfying the
Laplace equation ∆V = 0 is called harmonic.
If we require that on the boundary S of D we
have V = Φ with Φ a known function, this is
called the Dirichlet boundary value problem
for the Laplace equation. If we would look
for solutions on the infinite domain exterior
to D with the same boundary condition and
certain conditions at infinity, we would have

Figure 1 Balayage of a spherical body
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the exterior Dirichlet problem for the Laplace
equation; this describes the Newtonian grav-
itational field in the empty space outside a
body filling upD; the boundary potential pre-
scribed on S derives from the interior distribu-
tion of mass. The exterior Dirichlet problem
describes at the same time the electrical force
field outside a conductor inD with prescribed
electrical charge on S.

In the nineteenth century one could solve
such problems for simple geometries like
spheres and circular cylinders. Existence,
uniqueness and actual construction of solu-
tions for more general domains D was a dif-
ferent matter. Today, variational methods like
the Dirichlet principle, are useful in this re-
spect, but around 1890, the validity of the
variational principles was not yet proved, in-
deed Weierstrass had thrown doubt on it,
so scientists were looking for alternative so-
lution methods. Poincaré invented the so-
called balayage or sweeping method, a di-
dactical presentation is given in [16]. In what
follows, we describe his theory.

Consider to start with a ball B with spheri-
cal surface S, centre O and radius a in three-
dimensional space. A point M is located in-
side the sphere, distance to O is ρ; a surface
elementdω′ has centre of gravityM′; the dis-
tance fromM toM′ is r , see Figure 1.

Inside and outside the sphere we have a
distribution of mass; at the centre of gravity
of a volume element dτ, the density is µ. The
gravitational potential V at a point is written
as

V = V1 + V2,

with V1 the potential due to the mass inte-
rior to the sphere, V2 the potential due to
the mass exterior to the sphere. As we know
from potential theory, the potentialV1 will not
change when we replace each mass µdτ in
the ball B by a mass layer on the surface S
with density inM′:

µ′ =
a2 − ρ2

4πar3 µdτ.

The mass distribution on the surface S is
called the equivalent layer. With this proce-
dure we perform a sweeping (balayage) of all
the mass in the interior, producing inM′ on S
the density

µ′′ =
∫
B
µ
a2 − ρ2

4πar3 dτ.

The integration is taken over the interior of the

Figure 2 Balayage of a bounded, connected domain T

sphere. Clearly µ′′ > 0. We put

U1 =
∫
S

µ′′

r
dω′.

The potentialU1 equalsV1 outsideS,U1 ≤ V1

inside S; U1 is called subharmonic.
Consider now, more in general, a bounded,

connected domain T with smooth boundary
surface S, see Figure 2. P is a point inT where
a massm = 1 is located. A pointM in space at
distance ρ undergoes a Newtonian attraction
force fromm determined by the potential

V =
m
ρ
.

There exists a Green’s functionGwith respect
to the domain T with the properties

G =
1
ρ
−H,

whereH is harmonic and determined by

∆H = 0 in T and H =
1
ρ

on S.

Consider now a functionV that coincides with
H in domain T and equals 1/ρ outside the
boundary S; V is harmonic in T and outside
S, continuous in S and regular at infinity. For
a surface element dω′ as formulated above,
the theory of Green’s functions produces
the potential

V = − 1
4π

∫
S

∂G
∂n
dω′

r
.

So we can consider V as the potential of a
material layer spread out over S with density

− 1
4π

∂G
∂n
.

For a point outside S, the potential from a
mass in P equals the potential of the layer
on S.

To extend the balayage of a sphere to do-
main T we use a covering of T by a denu-
merable set of balls and a corresponding se-
quence of harmonic functions. In this se-
quence, each potentialUn+1 is obtained from
the preceding oneUn by balayage. It requires
a subtle reasoning for which we refer to [16]
and [10].

In modern potential theory one considers
domains in Rn with Borel measures (instead
of mass distributions) on sets of a general
nature where the balayage produces another
suitable measure.

Differential equations and dynamical systems
Poincaré has written extensively about dif-
ferential equations and dynamical systems,
writings that contain a huge amount of ma-
terial on the interaction of analysis and ge-
ometry. We will discuss some examples from
two major contributions, the Mémoire of 1882
and the Méthodes Nouvelles de la Mécanique
Célèste.

The Mémoire. Poincaré’s first appoint-
ment was to mining engineer in Vesoul. This
was soon followed by an assignment in math-
ematics at the university of Caen where he
wrote a Mémoire [13] that represented a com-
pletely new approach to the study of ordi-
nary differential equations (ODEs). Although
the Mémoire is restricted to autonomous 2nd
order equations, the research programme
sketched by Poincaré for ODEs is very general
and at present the programme still dominates
research. He writes in the beginning:

“Unfortunately it is evident that in general
these equations [ODEs] can not be integrat-
ed using known functions, for instance using
functions defined by quadrature. So, if we
would restrict ourselves to the cases that we
could study with definite or indefinite inte-
grals, the extent of our research would be re-
markably diminished and the vast majority of
questions that present themselves in appli-
cations would remain unsolved.”

And a few sentences on:
“The complete study of a function [solution

of an ODE] consists of two parts:
1. Qualitative part (to call it like this), or ge-

ometric study of the curve defined by the
function.

2. Quantitative part, or numerical calculation
of the values of the function.”
Consider the two-dimensional system

dx/dt = X(x,y), dy/dt = Y (x,y) with or-
bits in the (x,y)-phaseplane. For the analysis
of the system, Poincaré uses gnomonic pro-
jection; this is a cartographic projection of a
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plane onto a sphere (in cartography of course
the other way around). The plane is tangent
to the sphere and each point of the plane is
projected through the centre of the sphere,
producing two points on the spherical sur-
face, one on the Northern hemisphere, one
on the Southern. The equatorial plane sepa-
rates the two hemispheres. Each straight line
in the plane projects onto a great circle. So a
tangent to an orbit in the plane projects onto
a great circle that has one point in common
with the projection of the orbit on the sphere.
Such a point will be called a contact. A point
on the great circle in the equatorial plane cor-
responds with infinity.

The advantage of this projection is that the
plane is projected on a compact set which
makes it much more tractable. The prize we
pay for this is of course that we have to consid-
er with special attention the equatorial great
circle which corresponds with the points at in-
finity of the plane. A bounded set in the plane
is projected on two sets, symmetric with re-
spect to the centre of the sphere and located
in the two hemispheres.

If in a point (x0, y0) we have not simultane-
ously X = Y = 0, (x0, y0) is a regular point of
the system and we can obtain a power series
expansion of the solution near (x0, y0).

If in a point (x0, y0) we have simultane-
ously X = Y = 0, (x0, y0) is a singular
point. Under certain nondegeneracy condi-
tions Poincaré finds four types for which he
introduces the nowadays well-known names
saddle, node, focus and centre. These are
called singularities of first type. In the case
of certain degeneracies we have singularities
of the second type. Points on the equatorial
great circle may correspond with singularities
at infinity and can be investigated by simple
transformations. For instance, if the point is
not on the great circle x = 0, we transform

x =
1
z
, y =

u
z

and consider the transformed equation in z
and u. If a point on the great circle x = 0 is
investigated we transform

x =
u
z
, y =

1
z
.

The next section of the Mémoire discusses
the distribution and the number of singular
points. Assuming thatX and Y are polynomi-
al and of the same degree and ifXm, Ym indi-
cate the terms of the highest degree, while we
have not xYm − yXm = 0, then the number

of singular points is at least 2 (if the curves
described by X = 0 and Y = 0 do not inter-
sect on the two hemispheres after projection,
there must be an intersection on the equato-
rial circle). In addition it is shown that a sin-
gular point on the equator has to be a node
or a saddle, in the plane one cannot spiral
to or from infinity. An important concept to
be introduced is index. Consider a closed
curve, a cycle, located on one of the hemi-
spheres. Taking one tour of the cycle in the
positive sense, the expression Y/X jumps h
times from −∞ to +∞, it jumps k times from
+∞ to −∞. We call i with

i =
h− k

2

the index of the cycle. It is then relatively
easy to see that for cycles consisting of regular
points one has:
− A cycle with no singular point in its interior

has index 0.
− A cycle with exactly one singular point in

its interior has index +1 if it is a saddle,
index −1 if it is a node or a focus.

− If N is the number of nodes within a cy-
cle, F the number of foci, C the number of
saddles, the index of the cycle isC−N−F .

− If the number of nodes on the equator is
2N′, the number of saddles 2C′, the index
of the equator is N′ − C′ − 1.

− The total number of singular points on the
sphere is 2 + 4n, n = 0,1, . . ..
A solution of the ODE may touch a curve or

cycle in a point. Such a point is called a con-
tact; in a contact the orbit and the curve have
a common tangent. An algebraic curve or cy-
cle has only a finite number of contacts with
an orbit. Counting the number of contacts and
the number of intersections for a given curve
contains information about the geometry of
the orbits.

A useful tool is the ‘théorie des consé-
quents’, what is now called the theory of
Poincaré maps. We start with an algebra-
ic curve parametrised by t so that (x,y) =

(φ(t),ψ(t)) with φ(t),ψ(t) algebraic func-
tions; the endpoints A and B of the curve
are given by t = α and t = β. Assume that
the curve AB has no contacts and so has on-
ly intersections with the orbits. Starting on
point M1 with a semi-orbit, we may end up
again on the curveAB in pointM1 which is the
‘conséquent’ ofM0. Nowadays we would call
M1 the Poincaré map ofM0 under the phase-
flow of the ODE. Of course the semi-orbit may
fail to return to AB, for instance because it
will swirl around a focus far away or because

it ends up at a node. It is also possible to
choose the semi-orbit that moves in the op-
posite direction and return to the curve AB in
M′; this point is called the ‘antécédent’ ofM0.
If M0 = M1, the orbit is a cycle and Poincaré
argues that returning maps correspond with
either a cycle or a spiralling orbit. It is pos-
sible to discuss various possibilities with re-
gards to the existence of cycles in which the
presence or absence of singular points plays
a part.

This analysis has important consequences
for the theory of limit cycles. Semi-orbits will
be a cycle, a semi-spiral not ending at a sin-
gular point, or a semi-orbit going to a singular
point. Interior and exterior to a limit cycle
there has always to be at least one focus or
one node. Of the various possibilities consid-
ered it is natural to select annular domains,
not containing singular points and bounded
by cycles without contact. Such annular do-
mains are often used to prove the existence of
one or more limit cycles (Poincaré–Bendixson
theory).

We note that Poincaré generalized the
‘théorie des conséquents’ later for higher-
dimensional systems.

Non-integrability of Hamiltonian systems.
In the eighteenth and nineteenth centuries,
the integrability of conservative dynamics,
later formulated as Lagrangian or Hamilto-
nian systems, was not in doubt among sci-
entists. The only remaining problem, one
thought, was to find the integrals in explic-
it physical models. In that period one could
solve the gravitational two-body problem, one
also made advances in the theories of ro-
tating rigid bodies and rotating fluid masses
and it seemed a matter of time and ingenu-
ity to solve other cases like the gravitation-
al three-body problem. In 1890, Poincaré, in
his prize-winning essay [14] for the birthday
of the Swedish king Oscar II, overturned this
philosophy. Hamiltonian systems with two or
more degrees of freedom are in general non-
integrable; to put it differently, they are inte-
grable only under additional assumptions. It
took a very long time for scientists to under-
stand and accept this result. Partly this was
due to the philosophical impact of this non-
existence theorem, but this can not be the
full explanation as it was not simply a destruc-
tive result; it was accompanied by an exten-
sive collection of new qualitative and quanti-
tative concepts and tools to study dynamical
systems. It is difficult to understand why so
few scientists continued this line of research,
perhaps it was the requirement of both ana-
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lytic and geometric insight; people who fol-
lowed it up in the first half of the twentieth
century were Birkhoff, Denjoy, Siegel and Kol-
mogorov.

In [15], the fundamental theorem is for-
mulated and proved in the case of the
time-independent 2n-dimensional Hamilto-
nian equations of motion

ẋ =
∂F
∂y
, ẏ = − ∂F

∂x

with small parameterµ and the convergent ex-
pansion F = F0 +µF1 +µ2F2 +· · ·; F0 depends
on x only and the Jacobian is non-singular,
|∂F0/∂x| 6= 0. Suppose F = F (x,y) is analyt-
ic and periodic in y in a domainD; Φ(x,y) is
analytic in x,y in D, analytic in µ and peri-
odic in y:

Φ(x,y) = Φ0(x,y) + µΦ1(x,y)

+ µ2Φ2(x,y) + · · ·

The statement is then that with these assump-
tions, Φ(x,y) can not be an independent first
integral of the Hamiltonian equations of mo-
tion unless we impose further conditions.

In the prize essay [14] and in the Méthodes
Nouvelles [15] the approach to non-integrabil-
ity is carried out in different ways. In the prize
essay of 1890, the explicit theorem of non-
integrability is formulated for two degrees of
freedom systems with as application the pla-
nar, restricted, circular three-body problem.
The starting point in the prize essay [14] is
an unstable T -periodic solution with two ze-
ro characteristic exponents, one positive and
one negative. The last two exponents corre-
spond with an unstable and a stable invariant
manifold emanating from the periodic solu-
tion; Poincaré calls these invariant manifolds
‘surfaces asymptotiques’. Using series ex-
pansions for the solutions on the manifolds,
he finds an infinite number of intersections
instead of merging of the manifolds. This pre-
cludes the existence of homoclinic manifolds
that would indicate the presence of a second
integral. In the prize essay, the description of
the geometry of the dynamics is tied in with
the non-integrability results.

In the Méthodes Nouvelles [15], chapter 5
of volume 1, the technique is first analytic:
a second integral should Poisson commute
with and be independent of the Hamiltonian;
expanding the second integral with respect
to a suitable small parameter and applying
these conditions leads to a contradiction un-
less additional assumptions are made (see

also [21]). The dynamics and its geometry is
later extensively studied in volume 3.

The proof is in both publications inspired
by the actual Hamiltonian dynamics of sta-
ble and unstable manifolds. In chapter 32 of
[15] we find the famous description of chaot-
ic dynamical behaviour when considering the
Poincaré section of an unstable periodic solu-
tion in a two degrees of freedom Hamiltonian
system:

“If one tries to represent the figure formed
by these two curves with an infinite number of
intersections whereas each one corresponds
with a double asymptotic solution, these in-
tersections are forming a kind of lattice-work,
a tissue, a network of infinite closely packed
meshes. Each of the two curves must not cut
itself but it must fold onto itself in a very com-
plex way to be able to cut an infinite number
of times through each mesh of the network.

One will be struck by the complexity of this
picture that I do not even dare to sketch. Noth-
ing is more appropriate to give us an idea
of the intricateness of the three-body prob-
lem and in general all problems of dynam-
ics where one has not a uniform integral and
where the Bohlin series are divergent.”

The double asymptotic solutions are the
remaining homoclinic solutions that are pro-
duced by the intersections. The Bohlin series
are formal series obtained by Bohlin for peri-
odic solutions in celestial mechanics.

The Poincaré–Birkhoff theorem
A number of famous proofs developed by
Poincaré to prove the existence and approxi-
mation of periodic solutions have been based
on the implicit function theorem. In these
cases one starts with a known periodic solu-
tion, for instance in the case of the three-body
problem the limit case of one of the masses
being zero, thus reducing the system to the
known gravitational two-body problem. Start-
ing with the known periodic solutions of this
limiting problem one can try to obtain period-
ic solutions by continuation when increasing
the vanishing mass from zero to a small val-
ue. Poincaré was bothered by the restriction
of obtaining solutions in this way that are al-
ways close to known solutions, as the glob-
al view of the dynamics is still missing. He
was able to formulate an important theorem
regarding this question. In 1912, not long be-
fore his death, he wrote in the Rendiconti del
Circolo Mathematica di Palermo [18]:

“I have never made public a work that is
so unfinished; so I believe it is necessary
to explain in a few words the reasons that
have induced me to publish it and to start

George David Birkhoff (1884–1944)

with the reasons that brought me to under-
take this. Already a long time ago, I have
shown the existence of periodic solutions of
the three-body problem. However, the result
is not quite satisfactory, for if the existence of
each type of solution had been established
for small values of the masses, one did not
see what would happen for much larger val-
ues, which of the solutions would persist and
in which order they would vanish. Thinking
about this question I became convinced that
the answer would depend on a certain geo-
metric theorem being correct or false, a theo-
rem of which the formulation is very simple,
at least in the case of the restricted problem
and of dynamics problems that have not more
than two degrees of freedom.”

Poincaré adds that during two years he had
tried to prove the theorem but without suc-
cess. However, he was absolutely convinced
that the theorem was correct. What to do?
Leave the matter rest?

“It seems that under these conditions, I
would have to abstain of all publication of
which I had not solved the problems. After all
my fruitless efforts of long months, it seemed
to me the wisest road to let the problem ripen
and put it off my mind for a few years. That
would have been very good if I had been cer-
tain that I could retake it some time, but at my
age I could not say so. Also the importance
of the matter is too great and the amount of
results obtained already too considerable . . .”

He had already been suffering from seri-
ous prostate problems for several years and it
seemed to be a waste to keep all these ideas
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Figure 3 Twist map T of a ring shaped domain R

fruitless. As it turned out he was right, it is a
beautiful fixed point theorem that combines
geometric thinking with dynamics. In [12] it is
classified under geometry, but it belongs as
well to mechanics or differential equations.
The theorem can be formulated as follows
(see also Figure 3):

Poincaré–Birkhoff theorem. Consider in R2

the ring R bounded by the smooth closed
curves Ca and Cb. The map T : R 7→ R is
continuous, one-to-one and area preserving.
Applying T to R the points of Ca move in the
negative sense, the points of Cb move in the
positive sense (T is a ‘twist’ map). Then T has
at least two fixed points.

The theorem was proved by Birkhoff [2] (see
also [21]) in a relatively simple way. It is diffi-
cult to understand why Poincaré did not pro-
duce a proof like this. Looking at the 39 pages
of [18], one has the feeling that Poincaré just
for once saw too many small difficulties, that
he got bogged down in details.

The applications Poincaré had in mind can
be indicated as follows. Consider a dynami-
cal system derived from a time-independent
Hamiltonian with two degrees of freedom.
When studying the flow on a bounded energy
manifold, one can make a Poincaré section
of the flow in a neighbourhood of a periodic
solution. This periodic solution is represent-
ed as a fixed point of the Poincaré map; if
it is stable, the fixed point will be surround-
ed by closed curves corresponding with in-
variant tori around the periodic solution. The
Poincaré map is area preserving, so that the
application of the geometric theorem is pos-
sible if the twist condition has been satisfied.
This can be checked by considering the ro-
tation properties of the map on the closed
curves.

An interesting aspect is that if one is able
to apply the theorem for a Hamiltonian sys-
tem, one finds not only two fixed points corre-
sponding with two periodic solutions, but an
infinite number. This is caused by the pres-
ence of an infinite number of the tori enabling
us to construct an infinite number of rings.
If the tori are close, the twist will usually be

‘small’ and in this case the period of the peri-
odic solutions will be large. A strong twist of
the map produces short-periodic solutions, a
small twist long-periodic solutions.

Other applications can be found in prob-
lems of three-dimensional divergence-free
flow and conservative billiard dynamics,
see [3].

Conclusion
Henri Poincaré is sometimes described as
‘the last universal scientist’. He stressed the
importance of interaction between different
fields of knowledge as a source of innova-
tion in science. We restricted ourselves to
the interaction of geometry and analysis in
his work, for Poincaré there were many more
fields of interaction from astronomy and as-
trophysics, physics, engineering and the hu-
manities. k
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1 André Bellivier, Henri Poincaré, ou la vocation
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Paris, 22 dec. 1846. Also included in Traité
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